Selective and efficient quantum state tomography and its application to quantum process tomography

被引:8
|
作者
Bendersky, Ariel [1 ]
Pablo Paz, Juan [2 ,3 ]
机构
[1] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Univ Buenos Aires, CONICET, Dept Fis FCEyN UBA, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, CONICET, IFIBA, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
关键词
D O I
10.1103/PhysRevA.87.012122
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method for quantum state tomography that enables the efficient estimation, with fixed precision, of any of the matrix elements of the density matrix of a state, provided that the states from the basis in which the matrix is written can be efficiently prepared in a controlled manner. Furthermore, we show how this algorithm is well suited for quantum process tomography, enabling one to perform selective and efficient quantum process tomography. DOI: 10.1103/PhysRevA.87.012122
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Efficient quantum state tomography with convolutional neural networks
    Tobias Schmale
    Moritz Reh
    Martin Gärttner
    npj Quantum Information, 8
  • [22] Experimental demonstration of selective quantum process tomography on an NMR quantum information processor
    Gaikwad, Akshay
    Rehal, Diksha
    Singh, Amandeep
    Arvind
    Dorai, Kavita
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [23] Quantum state and process tomography via adaptive measurements
    Wang, HengYan
    Zheng, WenQiang
    Yu, NengKun
    Li, KeRen
    Lu, DaWei
    Xin, Tao
    Li, Carson
    Ji, ZhengFeng
    Kribs, David
    Zeng, Bei
    Peng, XinHua
    Du, JiangFeng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (10)
  • [24] Quantum state and process tomography via adaptive measurements
    HengYan Wang
    WenQiang Zheng
    NengKun Yu
    KeRen Li
    DaWei Lu
    Tao Xin
    Carson Li
    ZhengFeng Ji
    David Kribs
    Bei Zeng
    XinHua Peng
    JiangFeng Du
    Science China(Physics,Mechanics & Astronomy), 2016, (10) : 31 - 38
  • [25] Quantum state and process tomography via adaptive measurements
    HengYan Wang
    WenQiang Zheng
    NengKun Yu
    KeRen Li
    DaWei Lu
    Tao Xin
    Carson Li
    ZhengFeng Ji
    David Kribs
    Bei Zeng
    XinHua Peng
    JiangFeng Du
    Science China Physics, Mechanics & Astronomy, 2016, 59
  • [26] Efficient Quantum Tomography II
    O'Donnell, Ryan
    Wright, John
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 962 - 974
  • [27] Quantum process tomography of the quantum Fourier transform
    Weinstein, YS
    Havel, TF
    Emerson, J
    Boulant, N
    Saraceno, M
    Lloyd, S
    Cory, DG
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (13): : 6117 - 6133
  • [28] Quantum teleportation with atoms:: quantum process tomography
    Riebe, M.
    Chwalla, M.
    Benhelm, J.
    Haeffner, H.
    Haensel, W.
    Roos, C. F.
    Blatt, R.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [29] Quantum Error Mitigation for Quantum State Tomography
    Ramadhani, Syahri
    Rehman, Junaid Ur
    Shin, Hyundong
    IEEE ACCESS, 2021, 9 : 107955 - 107964
  • [30] Variational quantum circuits for quantum state tomography
    Liu, Yong
    Wang, Dongyang
    Xue, Shichuan
    Huang, Anqi
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Huang, He-Liang
    Deng, Mingtang
    Guo, Chu
    Yang, Xuejun
    Wu, Junjie
    PHYSICAL REVIEW A, 2020, 101 (05)