Expression of yeast cadmium factor 1 (YCF1) confers salt tolerance to Arabidopsis thaliana

被引:8
|
作者
Koh, EJ
Song, WY
Lee, Y
Kim, KH
Kim, K
Chung, NY
Lee, KW
Hong, SW
Lee, H
机构
[1] Korea Univ, Coll Life & Environm Sci, Div Life & Genet Engn, Seoul, South Korea
[2] POSTECH, Natl Res Lab Phytoremediat, Div Mol Life Sci, Pohang 790784, South Korea
[3] Chonnam Natl Univ, Coll Agr & Life Sci, Div Appl Plant Sci, Kwangju 500757, South Korea
[4] Korea Univ, Coll Life & Environm Sci, Dept Food Sci, Seoul 136701, South Korea
关键词
yeast cadmium factor 1; salt tolerance; Arabidopsis; multi-drug resistance protein;
D O I
10.1016/j.plantsci.2005.10.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Because agricultural productivity can be severely limited in saline soils, many different approaches are necessary to efficiently manipulate plant salt tolerance. Yeast cadmium factor 1 (YCF1), which sequesters glutathione-chelates of heavy metals and xenobiotics into vacuoles, has been introduced into Arabidopsis thaliana plants to improve heavy metal tolerance. Here, we show that transgenic A. thaliana plants expressing YCF1 are enhanced in salt or xenobiotic chemical (1-chloro-2, 4-dinitrobenzene, CDNB) tolerance as well. Two lines of evidence suggest that this enhanced tolerance may be partially due to sequestration of salts or xenobiotic chemical into vacuoles. First, YCF1 transgenic plants treated with high salt were capable of accumulating higher levels of sodium ions than wild-type. Second, the salt tolerance of the YCF1 plants was abolished when these plants were exposed to salt in the presence of buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthase, the first enzyme of glutathione biosynthesis. In line with these results, high salt treated YCF1 plants seem to experience a reduced level of salt stress compared to the wild-type, since salt stress-responsive genes such as COR15A and KIN1 were less strongly induced in these transgenic plants. Therefore, in addition to the previously shown increase in heavy metal tolerance by YCF1, our results clearly demonstrate that YCF1 gene can be used to improve salt and xenobiotic chemical tolerance, expanding our repertoire of methods for improving the ability of plants to cope with various abiotic stresses. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:534 / 541
页数:8
相关论文
共 50 条
  • [21] The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis
    Du, Chao
    Zhao, Pingping
    Zhang, Huirong
    Li, Ningning
    Zheng, Linlin
    Wang, Yingchun
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 215 : 48 - 58
  • [22] Overexpression of the elongation factor MtEF1A1 promotes salt stress tolerance in Arabidopsis thaliana and Medicago truncatula
    Lei Xu
    Lixia Zhang
    Yajiao Liu
    Bilig Sod
    Mingna Li
    Tianhui Yang
    Ting Gao
    Qingchuan Yang
    Ruicai Long
    BMC Plant Biology, 23
  • [23] Overexpression of the elongation factor MtEF1A1 promotes salt stress tolerance in Arabidopsis thaliana and Medicago truncatula
    Xu, Lei
    Zhang, Lixia
    Liu, Yajiao
    Sod, Bilig
    Li, Mingna
    Yang, Tianhui
    Gao, Ting
    Yang, Qingchuan
    Long, Ruicai
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [24] Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana
    Lin, Ya-Fen
    Hassan, Zeshan
    Talukdar, Sangita
    Schat, Henk
    Aarts, Mark G. M.
    PLOS ONE, 2016, 11 (03):
  • [25] Intragenic suppressors of Ycf1-S908A mutant, carrying a non-phosphorylatable version of the yeast ABC transporter Ycf1
    Eraso, P.
    Portillo, F.
    Mazón, M. J.
    FEBS JOURNAL, 2006, 273 : 355 - 355
  • [26] Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants
    Forment, J
    Naranjo, MA
    Roldán, M
    Serrano, R
    Vicente, O
    PLANT JOURNAL, 2002, 30 (05): : 511 - 519
  • [27] Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana
    Zou, Huawen
    Wu, Zhongyi
    Zhang, Xiuhai
    Wang, Yongqin
    Huang, Conglin
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (05): : 656 - 662
  • [28] Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance
    Kitashiba, H
    Ishizaka, T
    Isuzugawa, K
    Nishimura, K
    Suzuki, T
    JOURNAL OF PLANT PHYSIOLOGY, 2004, 161 (10) : 1171 - 1176
  • [29] Overexpression of Arabidopsis thaliana tryptophan synthase beta 1 (AtTSB1) in Arabidopsis and tomato confers tolerance to cadmium stress (vol 31, pg 1078, 2008)
    不详
    PLANT CELL AND ENVIRONMENT, 2008, 31 (09): : 1361 - 1361
  • [30] Over-expression of heat shock factor gene (AtHsfA1d) from Arabidopsis thaliana confers formaldehyde tolerance in tobacco
    Nian, Hong-Juan
    Zhang, Dao-Jun
    Zeng, Zhi-Dong
    Yan, Jin-Ping
    Li, Kun-Zhi
    Chen, Li-Mei
    ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (06) : 1455 - 1462