Intermodulation Interference Detection in 6G Networks: A Machine Learning Approach

被引:1
|
作者
Mismar, Faris B. [1 ]
机构
[1] Nokia Bell Labs Consulting, Murray Hill, NJ 07974 USA
关键词
intermodulation; interference; detection; real-time; machine learning; SG; 6G; edge computing;
D O I
10.1109/VTC2022-Spring54318.2022.9860900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper demonstrates the use of machine learning to detect the presence of intermodulation interference across several wireless carriers. We show a salient characteristic of intermodulation interference and propose a machine learning based algorithm that detects the presence of intermodulation interference through the use of supervised learning. This algorithm can use the radio access network intelligent controller or the sixth generation of wireless communication (6G) edge node as a means of computation. Our proposed algorithm runs in linear time in the number of resource blocks, making it a suitable radio resource management application in 6G.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future
    Nawaz, Syed Junaid
    Sharma, Shree Krishna
    Wyne, Shurjeel
    Patwary, Mohammad N.
    Asaduzzaman, Md
    IEEE ACCESS, 2019, 7 : 46317 - 46350
  • [22] Brazil 6G Project - An Approach to Build a National-wise Framework for 6G Networks
    Brito, Jose Marcos C.
    Mendes, Luciano Leonel
    Sampaio Gontijo, Jose Gustavo
    2020 2ND 6G WIRELESS SUMMIT (6G SUMMIT), 2020,
  • [23] Machine Learning in Beyond 5G/6G Networks-State-of-the-Art and Future Trends
    Rekkas, Vasileios P.
    Sotiroudis, Sotirios
    Sarigiannidis, Panagiotis
    Wan, Shaohua
    Karagiannidis, George K.
    Goudos, Sotirios K.
    ELECTRONICS, 2021, 10 (22)
  • [24] Modeling Interference for the Coexistence of 6G Networks and Passive Sensing Systems
    Testolina P.
    Polese M.
    Jornet J.M.
    Melodia T.
    Zorzi M.
    IEEE Transactions on Wireless Communications, 2024, 23 (08) : 1 - 1
  • [25] Intelligent multimedia content delivery in 5G/6G networks: A reinforcement learning approach
    Iqbal, Muhammad Jamshaid
    Farhan, Muhammad
    Ullah, Farhan
    Srivastava, Gautam
    Jabbar, Sohail
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (04):
  • [26] When Machine Learning Meets Privacy in 6G: A Survey
    Sun, Yuanyuan
    Liu, Jiajia
    Wang, Jiadai
    Cao, Yurui
    Kato, Nei
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2694 - 2724
  • [27] From 5G to 6G Networks: A Survey on AI-Based Jamming and Interference Detection and Mitigation
    Lohan, Poonam
    Kantarci, Burak
    Amine Ferrag, Mohamed
    Tihanyi, Norbert
    Shi, Yi
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 3920 - 3974
  • [28] URLLC in Beyond 5G and 6G Networks: An Interference Management Perspective
    Siddiqui, Maraj Uddin Ahmed
    Abumarshoud, Hanaa
    Bariah, Lina
    Muhaidat, Sami
    Imran, Muhammad Ali
    Mohjazi, Lina
    IEEE ACCESS, 2023, 11 : 54639 - 54663
  • [29] An Inter-disciplinary Modelling Approach in Industrial 5G/6G and Machine Learning Era
    Mohamed, Abdelrahim
    Ruan, Hang
    Abdelwahab, Mohamed Heshmat Hassan
    Dorneanu, Bogdan
    Xiao, Pei
    Arellano-Garcia, Harvey
    Gao, Yang
    Tafazolli, Rahim
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [30] Hybrid Deep Learning Approach for 6G MIMO Channel Estimation and Interference Alignment HetNet Environments
    Subramanian, Ranjith
    Jayarin, Jesu
    Chandrasekar, Arumugam
    TRAITEMENT DU SIGNAL, 2023, 40 (05) : 1951 - 1960