The Feynman path integral quantization of constrained systems

被引:0
|
作者
Muslih, S
Guler, Y
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Feynman path integral for constrained systems is constructed using the canonical formalism introduced by Guler. This approach is applied to a free relativistic particle and Christ-Lee model.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [21] FEYNMAN PATH INTEGRAL FOR A PARTICLE WITH SPIN
    GARCZYNSKI, W
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (04): : 359 - 362
  • [22] THE FEYNMAN PATH INTEGRAL FOR THE DIRAC EQUATION
    RIAZANOV, GV
    [J]. SOVIET PHYSICS JETP-USSR, 1958, 6 (06): : 1107 - 1113
  • [23] Feynman path integral of Riemann type
    Furuya, Kiyoko
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [24] QUANTIZATION OF CONSTRAINED SYSTEMS AND PATH-INTEGRALS IN CURVILINEAR SUPERCOORDINATES
    SHABANOV, SV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (06): : 1199 - 1214
  • [25] FEYNMAN PATH INTEGRAL AND THE INTERACTION PICTURE
    PUGH, RE
    [J]. PHYSICAL REVIEW D, 1986, 33 (04): : 1027 - 1032
  • [26] Feynman's path integral seen as a Henstock integral
    Guadalupe Morales, M.
    Gaitan, Ricardo
    [J]. 31ST ANNUAL MEETING OF THE DIVISION OF PARTICLES AND FIELDS (DPYC) OF THE MEXICAN PHYSICAL SOCIETY, 2017, 912
  • [27] PATH INTEGRAL QUANTIZATION OF NONRELATIVISTIC SYSTEMS WITH MAGNETIC-CHARGES
    BERNIDO, CC
    CARPIOBERNIDO, MV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02): : 407 - 413
  • [28] PATH INTEGRAL QUANTIZATION OF CERTAIN NONCENTRAL SYSTEMS WITH DYNAMIC SYMMETRIES
    CARPIOBERNIDO, MV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (07) : 1799 - 1807
  • [29] PATH INTEGRAL QUANTIZATION OF SUPERSTRING
    Elegla, H. A.
    Farahat, N. I.
    [J]. MODERN PHYSICS LETTERS A, 2010, 25 (02) : 135 - 141
  • [30] Path Integral Quantization of Volume
    Lim, Adrian P. C.
    [J]. ANNALES HENRI POINCARE, 2020, 21 (04): : 1311 - 1327