Prevalence and mechanism of fluoroquinolone resistance in clinical isolates of Proteus mirabilis in Japan

被引:3
|
作者
Nakano, Ryuichi [1 ]
Nakano, Akiyo [1 ]
Abe, Michiko [2 ]
Nagano, Noriyuki [3 ]
Asahara, Miwa [4 ]
Furukawa, Taiji [4 ]
Ono, Yasuo [5 ]
Yano, Hisakazu [1 ]
Okamoto, Ryoichi [6 ]
机构
[1] Nara Med Univ, Dept Microbiol & Infect Dis, Kashihara, Nara, Japan
[2] Kitasato Univ, Dept Med Lab Sci, Sch Allied Hlth Sci, Sagamihara, Kanagawa, Japan
[3] Shinshu Univ, Grad Sch Med, Dept Hlth & Med Sci, Matsumoto, Nagano, Japan
[4] Teikyo Univ Hosp, Dept Cent Clin Lab, Itabashi Ku, Tokyo, Japan
[5] Teikyo Univ, Sch Med, Dept Microbiol & Immunol, Itabashi Ku, Tokyo, Japan
[6] Kitasato Univ, Sch Med, Dept Microbiol, Sagamihara, Kanagawa, Japan
基金
日本学术振兴会;
关键词
Microbiology; Epidemiology; II TOPOISOMERASE MUTATIONS; BETA-LACTAMASE PRODUCTION; CIPROFLOXACIN RESISTANCE; ESCHERICHIA-COLI; DNA GYRASE; EPIDEMIOLOGY; TRENDS; SUSCEPTIBILITIES; SURVEILLANCE; INFECTIONS;
D O I
10.1016/j.heliyon.2019.e01291
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fluoroquinolone (FQ) and cephalosporin (CEP) resistance among Enterobacteriaceae has been increasingly reported. FQ resistance occurs primarily through mutations in DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE). CEP resistance in Enterobacteriaceae is mainly due to the production of CTX-M type extended-spectrum beta-lactamases. Although prevalence and mechanisms of FQ and CEP resistance in Enterobacteriaceae such as Escherichia coli have been well studied, little is known about Proteus mirabilis in Japan. In this study, we assessed the prevalence and mechanism of FQ resistance in Japanese clinical isolates of P. mirabilis. We collected 5845 P. mirabilis isolates from eight hospitals between 2000 and 2013. Prevalence of FQ resistance was calculated as the annual average percentage of all P. mirabilis isolates. We selected 50 isolates exhibiting susceptibility, intermediate resistance, or resistance to levofloxacin (LVX) and identified amino acid substitutions in GyrA, GyrB, ParC, and ParE. The prevalence of FQ-resistant P. mirabilis gradually increased from 2001 to 2004, reaching 16.6% in 2005, and has remained relatively high (13.3e17.5%) since then. Low-level LVX-resistant strains (MIC, 8-16 mg/L) showed significant changes in GyrB (S464Y or -I, or E466D). High-level LVX-resistant strains (MIC, 32-128 mg/L) displayed significant changes in GyrA (E87K) and ParE (D420N). The highest-level LVX-resistant strains (MIC, >= 256 mg/L) presented significant changes in GyrA (E87K or -G), GyrB (S464I or -F), and ParE (D420N). Our findings suggest that substitutions in GyrA (E87) and ParE (D420) have played an important role in the emergence of high-level LVX-resistant P. mirabilis isolates (MIC, >= 32 mg/L) in Japan.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fluoroquinolone resistance in clinical isolates of Klebsiella oxytoca
    Horii, Toshinobu
    Osaki, Mai
    Muramatsu, Hideaki
    CHEMOTHERAPY, 2008, 54 (04) : 323 - 327
  • [22] Fluoroquinolone Resistance in Clinical Isolates of Klebsiella oxytoca
    Horii, T.
    Osaki, M.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2008, 12 : E108 - E108
  • [23] Trends in the susceptibilities of Proteus mirabilis isolates to quinolones
    Hernández, JR
    Martínez-Martínez, L
    Pascual, A
    Suárez, AI
    Perea, EJ
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2000, 45 (03) : 407 - 408
  • [24] Effects of Cefazolin and Meropenem in Eradication Biofilms of Clinical and Environmental Isolates of Proteus mirabilis
    Sivoneide Silva
    Lívia Araújo
    José Adelson Nascimento Junior
    Túlio Silva
    Ana Catarina Lopes
    Maria Tereza Correia
    Márcia Silva
    Maria Betânia Oliveira
    Current Microbiology, 2020, 77 : 1681 - 1688
  • [25] Proteus genomic island 1 (PGI1), a new resistance genomic island from two Proteus mirabilis French clinical isolates
    Siebor, Eliane
    Neuwirth, Catherine
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2014, 69 (12) : 3216 - 3220
  • [26] Effects of Cefazolin and Meropenem in Eradication Biofilms of Clinical and Environmental Isolates of Proteus mirabilis
    Silva, Sivoneide
    Araujo, Livia
    Nascimento Junior, Jose Adelson
    Silva, Tulio
    Souza Lopes, Ana Catarina
    Correia, Maria Tereza
    Silva, Marcia
    Oliveira, Maria Betania
    CURRENT MICROBIOLOGY, 2020, 77 (08) : 1681 - 1688
  • [27] Uptake pathways of clinical isolates of Proteus mirabilis into human epithelial cell lines
    Oelschlaeger, TA
    Tall, BD
    MICROBIAL PATHOGENESIS, 1996, 21 (01) : 1 - 16
  • [28] Antibiotic Resistance in Proteus mirabilis: Mechanism, Status, and Public Health Significance
    Alqurashi, Ebtehal
    Elbanna, Khaled
    Ahmad, Iqbal
    Abulreesh, Hussein H.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2022, 16 (03): : 1550 - 1561
  • [29] CHLORHEXIDINE RESISTANCE IN PROTEUS-MIRABILIS
    STICKLER, DJ
    JOURNAL OF CLINICAL PATHOLOGY, 1974, 27 (04) : 284 - 287
  • [30] Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae
    Brenwald, NP
    Gill, MJ
    Wise, R
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (08) : 2032 - 2035