Application of non-linear transform coding to image processing

被引:0
|
作者
Hocke, Jens [1 ]
Barth, Erhardt [1 ]
Martinetz, Thomas [1 ]
机构
[1] Med Univ Lubeck, Inst Neuro & Bioinformat, D-23538 Lubeck, Germany
来源
关键词
image processing; sparse coding; maximal causes analysis; basis learning; sparseness; computational photography;
D O I
10.1117/12.908732
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding learns its basis non-linearly, but the basis elements are still linearly combined to form an image. Is this linear combination of basis elements a good model for natural images? We here use a non-linear synthesis rule, such that at each location in the image the point-wise maximum over all basis elements is used to synthesize the image. We present algorithms for image approximation and basis learning using this synthesis rule. With these algorithms we explore the the pixel-wise maximum over the basis elements as an alternative image model and thus contribute to the problem of finding a proper representation of natural images.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Image Denoising With Linear and Non-linear Filters
    Ahamed, B. Bazeer
    Yuvaraj, D.
    Priya, S. Shanmuga
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 806 - 810
  • [42] APPLICATION OF NON-LINEAR ACOUSTIC PHENOMENA TO SIGNAL-PROCESSING AND SPECTROSCOPY
    MELCHER, RL
    SHIREN, NS
    [J]. IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1979, 26 (02): : 148 - 148
  • [43] Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
    LI Chaokui ZHU Qing SONG ChengfangLI Chaokui
    [J]. Geo-spatial Information Science, 2003, (02) : 25 - 30
  • [44] Non-linear methods in information processing: Modelling, numerical simulation and application
    Kontorovich, V
    Lyandres, V
    Primak, S
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (1-3): : 417 - 428
  • [45] Pointwise convergence of the non-linear Fourier transform
    Poltoratski, A.
    [J]. ANNALS OF MATHEMATICS, 2024, 199 (02) : 741 - 793
  • [46] NON-LINEAR IMAGE-PROCESSING USING FABRY-PEROT INTERFEROMETERS
    BARTHOLOMEW, B
    LEE, SH
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (10) : 1377 - 1377
  • [47] Non-Linear Filter Response Distributions of Natural Images and Applications in Image Processing
    Balinsky, A.
    Mohammad, N.
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (03): : 367 - 389
  • [48] On Optimal Coding of Non-Linear Dynamical Systems
    Kawan, Christoph
    Yuksel, Serdar
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6816 - 6829
  • [49] Arithmetic coding as a non-linear dynamical system
    Nagaraj, Nithin
    Vaidya, Prabhakar G.
    Bhat, Kishor G.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1013 - 1020
  • [50] ON OPTIMUM NON-LINEAR EXTRACTION AND CODING FILTERS
    BALAKRISHNAN, AV
    DRENICK, R
    [J]. IRE TRANSACTIONS ON INFORMATION THEORY, 1956, 2 (03): : 166 - 172