Infinitely many solutions for a class of fractional Schrodinger equations with sign-changing weight functions

被引:1
|
作者
Chen, Yongpeng [1 ]
Jin, Baoxia [2 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
[2] Liuzhou Inst Technol, Dept Math & Sci, Liuzhou 545006, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional Schrodinger equation; Sign-changing weight functions; Nehari manifold; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; ELLIPTIC PROBLEMS; MULTIPLICITY;
D O I
10.1186/s13661-022-01667-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fractional Schrodinger equation {(-Delta)(s) u + u = a(x)vertical bar u vertical bar(p-2)u + b(x)vertical bar u(vertical bar q-2)u, u is an element of H-s(R-N), where (-Delta)(s) denotes the fractional Laplacian of order s is an element of (0, 1), N > 2s, 2 < p < q < 2(s)*, and 2(s)* is the fractional critical Sobolev exponent. The weight potentials a or b is a sign-changing function and satisfies some valid assumptions. We obtain the existence of infinitely many solutions to the problem by the Nehari manifold.
引用
下载
收藏
页数:13
相关论文
共 50 条