A novel noncommutative KdV-type equation, its recursion operator, and solitons

被引:10
|
作者
Carillo, Sandra [1 ,2 ]
Lo Schiavo, Mauro [1 ]
Porten, Egmont [3 ,4 ]
Schiebold, Cornelia [3 ,4 ]
机构
[1] Sapienza Univ Roma, Dipartimento SBAI, Rome, Italy
[2] INFN, Sez Roma 1, Gr Math Methods NonLinear Phys 4, Rome, Italy
[3] Mid Sweden Univ, MOD, Sundsvall, Sweden
[4] Uniwersytet Jana Kochanowskiego Kielcach, Inst Matemat, Kielce, Poland
关键词
MATRIX GENERALIZATION; EVOLUTION-EQUATIONS;
D O I
10.1063/1.5027481
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A noncommutative KdV-type equation is introduced extending the Backlund chart in Carillo et al. [Symmetry Integrability Geom.: Methods Appl. 12, 087 (2016)]. This equation, called meta-mKdV here, is linked by Cole-Hopf transformations to the two noncommutative versions of the mKdV equations listed in Olver and Sokolov [Commun. Math. Phys. 193, 245 (1998), Theorem 3.6]. For this meta-mKdV, and its mirror counterpart, recursion operators, hierarchies, and an explicit solution class are derived. Published by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Exact solutions and multi-symplectic structure of the generalized KdV-type equation
    Xiao-Feng Yang
    Zi-Chen Deng
    Qing-Jun Li
    Yi Wei
    Advances in Difference Equations, 2015
  • [33] Z3-SYMMETRIC CONFORMAL ALGEBRA FROM KDV-TYPE EQUATION
    PARK, SU
    CHO, BH
    MYUNG, YS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (05): : 1167 - 1171
  • [34] Exact solutions and multi-symplectic structure of the generalized KdV-type equation
    Yang, Xiao-Feng
    Deng, Zi-Chen
    Li, Qing-Jun
    Wei, Yi
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [35] Exact three-wave solution for higher dimensional KdV-type equation
    Wang, Chuanjian
    Dai, Zhengde
    Liang, Lin
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 501 - 505
  • [36] The geophysical KdV equation: its solitons, complexiton, and conservation laws
    K. Hosseini
    A. Akbulut
    D. Baleanu
    S. Salahshour
    M. Mirzazadeh
    L. Akinyemi
    GEM - International Journal on Geomathematics, 2022, 13
  • [37] The geophysical KdV equation: its solitons, complexiton, and conservation laws
    Hosseini, K.
    Akbulut, A.
    Baleanu, D.
    Salahshour, S.
    Mirzazadeh, M.
    Akinyemi, L.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [38] Dromion-like structures in a (3+1)-dimensional KdV-type equation
    Lou, SY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 5989 - 6001
  • [39] An efficient algorithm of logarithmic transformation to Hirota bilinear form of KdV-type bilinear equation
    Ye, Yichao
    Wang, Lihong
    Chang, Zhaowei
    He, Jingsong
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 2200 - 2209
  • [40] The noncommutative KdV equation and its para-Khler structure
    DING Qing
    HE ZhiZhou
    ScienceChina(Mathematics), 2014, 57 (07) : 1505 - 1516