Native defects in InxGa1-xN alloys

被引:10
|
作者
Li, SX
Yu, KM
Wu, J
Jones, RE
Walukiewicz, W [1 ]
Ager, JW
Shan, W
Haller, EE
Lu, H
Schaff, WJ
机构
[1] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA
关键词
InN; InGaN; native defects; Fermi stabilization energy;
D O I
10.1016/j.physb.2005.12.111
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
To elucidate the role of native defects in determining the electronic and optical properties of In1-xGaxN, energetic particle irradiation (electrons, protons, and He-4(+)) has been used to intentionally introduce point defects into InxGa1-xN alloys. Optical absorption, Hall effect, and capacitance-voltage (CV) measurements are used to evaluate properties of these materials. Irradiation produces donor-like defects in InxGa1-xN with x > 0.34, while acceptor-like defects form in Ga-rich InxGa1-xN (x < 0.34). A sufficiently high irradiation dose pins the Fermi level at the Fermi level stabilization energy (E-FS), as predicted by the amphoteric defect model. Pinning of the Fermi level at this energy is also responsible for the surface electron accumulation effect in unirradiated In-rich In1-xGaxN. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:432 / 435
页数:4
相关论文
共 50 条
  • [21] Structure and strain relaxation effects of defects in InxGa1-xN epilayers
    Rhode, S. L.
    Fu, W. Y.
    Moram, M. A.
    Massabuau, F. C. -P.
    Kappers, M. J.
    McAleese, C.
    Oehler, F.
    Humphreys, C. J.
    Dusane, R. O.
    Sahonta, S. -L.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (10)
  • [22] Bowing of the band gap pressure coefficient in InxGa1-xN alloys
    Franssen, G.
    Gorczyca, I.
    Suski, T.
    Kaminska, A.
    Pereiro, J.
    Munoz, E.
    Iliopoulos, E.
    Georgakilas, A.
    Che, S. B.
    Ishitani, Y.
    Yoshikawa, A.
    Christensen, N. E.
    Svane, A.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (03)
  • [23] Vacancy-type defects in InxGa1-xN alloys probed using a monoenergetic positron beam
    Uedono, A.
    Ishibashi, S.
    Watanabe, T.
    Wang, X. Q.
    Liu, S. T.
    Chen, G.
    Sang, L. W.
    Sumiya, M.
    Shen, B.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
  • [24] Photoconductivity in InxGa1-xN epilayers
    Zheng, Xiantong
    Guo, Lei
    Liang, Hongwei
    Wang, Ping
    Wang, Shibo
    Wang, Tao
    Rong, Xin
    Sheng, Bowen
    Yang, Xueling
    Xu, Fujun
    Qin, Zhixin
    Shen, Bo
    Wang, Xinqiang
    OPTICAL MATERIALS EXPRESS, 2016, 6 (03): : 815 - 822
  • [25] Influence of the dipole interaction energy on clustering in InxGa1-xN alloys
    Miller, EJ
    Yu, ET
    APPLIED PHYSICS LETTERS, 2001, 78 (16) : 2303 - 2305
  • [26] A quantitative procedure to probe for compositional inhomogeneities in InxGa1-xN alloys
    Bartel, T. P.
    Kisielowski, C.
    ULTRAMICROSCOPY, 2008, 108 (11) : 1420 - 1426
  • [27] Molecular simulation study of miscibility in InxGa1-xN ternary alloys
    Adhikari, J
    Kofke, DA
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (08) : 4500 - 4502
  • [28] Electron transport in Ga-rich InxGa1-xN alloys
    Yildiz, A.
    Lisesivdin, S. B.
    Acar, S.
    Kasap, M.
    Bosi, M.
    CHINESE PHYSICS LETTERS, 2007, 24 (10) : 2930 - 2933
  • [29] Photoelectrochemical etching of InxGa1-xN
    Cho, H
    Donovan, SM
    Abernathy, CR
    Pearton, SJ
    Ren, F
    Han, J
    Shul, RJ
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 1999, 4
  • [30] Compositional modulation in InxGa1-xN
    Liliental-Weber, Z
    Zakharov, DN
    Yu, KM
    Ager, JW
    Walukiewicz, W
    Haller, EE
    Lu, H
    Schaff, WJ
    PHYSICA B-CONDENSED MATTER, 2006, 376 : 468 - 472