DENSITY-SENSITIVE SEMISUPERVISED INFERENCE

被引:14
|
作者
Azizyan, Martin [1 ,2 ]
Singh, Aarti [1 ,2 ]
Wasserman, Larry [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 02期
关键词
Nonparametric inference; semisupervised; kernel density; efficiency;
D O I
10.1214/13-AOS1092
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semisupervised methods are techniques for using labeled data (X-1, Y-1), ..., (X-n, Y-n) together with unlabeled data Xn+1, ..., X-N to make predictions. These methods invoke some assumptions that link the marginal distribution P-X of X to the regression function f(x). For example, it is common to assume that f is very smooth over high density regions of P-X. Many of the methods are ad-hoc and have been shown to work in specific examples but are lacking a theoretical foundation. We provide a minimax framework for analyzing semisupervised methods. In particular, we study methods based on metrics that are sensitive to the distribution P-X. Our model includes a parameter alpha that controls the strength of the semisupervised assumption. We then use the data to adapt to alpha.
引用
收藏
页码:751 / 771
页数:21
相关论文
共 50 条
  • [41] EXPERIMENTAL-OBSERVATIONS OF DENSITY-SENSITIVE LINE EMISSION FROM NEON-LIKE IONS IN A LASER-PRODUCED PLASMA
    BAILEY, J
    STEWART, RE
    KILKENNY, JD
    WALLING, RS
    PHILLIPS, T
    FORTNER, RJ
    LEE, RW
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1986, 19 (17) : 2639 - 2644
  • [42] Global and Uniform Point Cloud Completion With Density-Sensitive Transformer for Small-Scale 3-D Object Reconstruction
    Sun, Junhua
    Guo, Rong
    Zhang, Jie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (08) : 10499 - 10509
  • [43] ELECTRON-DENSITIES IN SOLAR-FLARE AND ACTIVE REGION PLASMAS FROM A DENSITY-SENSITIVE LINE RATIO OF FE-IX
    FELDMAN, U
    DOSCHEK, GA
    WIDING, KG
    ASTROPHYSICAL JOURNAL, 1978, 219 (01): : 304 - 306
  • [44] V2X-DSI: A Density-Sensitive Infrastructure LiDAR Benchmark for Economic Vehicle-to-Everything Cooperative Perception
    Liu, Xinyu
    Li, Baolu
    Xu, Runsheng
    Ma, Jiaqi
    Li, Xiaopeng
    Li, Jinlong
    Yu, Hongkai
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 490 - 495
  • [45] MiR-590-5p, a density-sensitive microRNA, inhibits tumorigenesis by targeting YAP1 in colorectal cancer
    Ou, Chunlin
    Sun, Zhenqiang
    Li, Xiayu
    Li, Xiaoling
    Ren, Weiguo
    Qin, Zailong
    Zhang, Xuemei
    Yuan, Weitang
    Wang, Jia
    Yu, Wentao
    Zhang, Shiwen
    Peng, Qiu
    Yan, Qun
    Xiong, Wei
    Li, Guiyuan
    Ma, Jian
    CANCER LETTERS, 2017, 399 : 53 - 63
  • [46] Facies prediction with Bayesian inference: Application of supervised and semisupervised deep learning
    Singh, Sagar
    Tsvankin, Ilya
    Naeini, Ehsan Zabihi
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2022, 10 (02): : T279 - T290
  • [47] Semisupervised learning-based depth estimation with semantic inference guidance
    Zhang Yan
    Fan XiaoPeng
    Zhao DeBin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (05) : 1098 - 1106
  • [48] Semisupervised learning-based depth estimation with semantic inference guidance
    Yan Zhang
    XiaoPeng Fan
    DeBin Zhao
    Science China Technological Sciences, 2022, 65 : 1098 - 1106
  • [49] Semisupervised learning-based depth estimation with semantic inference guidance
    ZHANG Yan
    FAN XiaoPeng
    ZHAO DeBin
    Science China(Technological Sciences), 2022, 65 (05) : 1098 - 1106
  • [50] Semisupervised learning-based depth estimation with semantic inference guidance
    ZHANG Yan
    FAN XiaoPeng
    ZHAO DeBin
    Science China Technological Sciences, 2022, (05) : 1098 - 1106