DENSITY-SENSITIVE SEMISUPERVISED INFERENCE

被引:14
|
作者
Azizyan, Martin [1 ,2 ]
Singh, Aarti [1 ,2 ]
Wasserman, Larry [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 02期
关键词
Nonparametric inference; semisupervised; kernel density; efficiency;
D O I
10.1214/13-AOS1092
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semisupervised methods are techniques for using labeled data (X-1, Y-1), ..., (X-n, Y-n) together with unlabeled data Xn+1, ..., X-N to make predictions. These methods invoke some assumptions that link the marginal distribution P-X of X to the regression function f(x). For example, it is common to assume that f is very smooth over high density regions of P-X. Many of the methods are ad-hoc and have been shown to work in specific examples but are lacking a theoretical foundation. We provide a minimax framework for analyzing semisupervised methods. In particular, we study methods based on metrics that are sensitive to the distribution P-X. Our model includes a parameter alpha that controls the strength of the semisupervised assumption. We then use the data to adapt to alpha.
引用
收藏
页码:751 / 771
页数:21
相关论文
共 50 条
  • [1] DENSITY-SENSITIVE INSTABILITIES IN MAGNETOSPHERE
    CORNWALL, JM
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1976, 38 (11): : 1111 - 1114
  • [2] Density-sensitive evolutionary clustering
    Gong, Maoguo
    Jiao, Licheng
    Wang, Ling
    Bo, Liefeng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 507 - +
  • [3] Density-sensitive spectral clustering
    Wang, Ling
    Bo, Lie-Feng
    Jiao, Li-Cheng
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2007, 35 (08): : 1577 - 1581
  • [4] A Density-Sensitive Hierarchical Clustering Method
    Álvaro Martínez-Pérez
    Journal of Classification, 2018, 35 : 481 - 510
  • [5] A Density-Sensitive Hierarchical Clustering Method
    Martinez-Perez, Alvaro
    JOURNAL OF CLASSIFICATION, 2018, 35 (03) : 481 - 510
  • [6] Local Information for Density-Sensitive Spectral Clustering
    Dai, Qian
    Zhang, Lisheng
    GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [7] A robust density peaks clustering algorithm with density-sensitive similarity
    Xu, Xiao
    Ding, Shifei
    Wang, Lijuan
    Wang, Yanru
    KNOWLEDGE-BASED SYSTEMS, 2020, 200
  • [8] Density-sensitive semi-supervised spectral clustering
    Wang, Ling
    Bo, Lie-Feng
    Jiao, Li-Cheng
    Ruan Jian Xue Bao/Journal of Software, 2007, 18 (10): : 2412 - 2422
  • [9] Current Density-Sensitive Welding of a Semiconductor Nanowire to a Metal Electrode
    Tan Yu
    Wang Yan-Guo
    CHINESE PHYSICS LETTERS, 2013, 30 (01)
  • [10] Density-sensitive fuzzy kernel maximum entropy clustering algorithm
    Li Y.-T.
    Guo J.
    Qi L.
    Liu X.
    Ruan P.-Y.
    Tao X.-M.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (01): : 67 - 82