An Interest Countable and Divisible E-cash Scheme Based on HECC

被引:0
|
作者
Zhang, Xiaoping [1 ]
Zhong, Cheng [1 ]
机构
[1] Guangxi Univ, Sch Comp & Elect Informat, Nanning 530004, Peoples R China
关键词
interest countable; divisible; HECC; e-cash;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a piratical interest countable and divisible e-cash scheme based on HECC. A very simple method instead of complex binary-tree presentation technique is used to construct a divisible e-cash system, thus making the system efficient. The interest of e-cash from drawing to payment will be calculated in the scheme, and this method avoids the loss of interest in the period. Compared with previous RSA, Elgamal and EEC based e-cash system, HECC possess fewer bits achieving the same security level as other public key cryptosystems. So our system requires much shorter security parameter size and it also scales better.
引用
收藏
页码:419 / 422
页数:4
相关论文
共 50 条
  • [21] Efficient Arbitrarily Divisible E-Cash Applicable to Secure Massive Transactions
    Liu, Jianhua
    IEEE ACCESS, 2019, 7 : 59299 - 59310
  • [22] Cut Down the Tree to Achieve Constant Complexity in Divisible E-cash
    Pointcheval, David
    Sanders, Olivier
    Traore, Jacques
    PUBLIC-KEY CRYPTOGRAPHY (PKC 2017), PT I, 2017, 10174 : 61 - 90
  • [23] Divisible E-Cash from Constrained Pseudo-Random Functions
    Bourse, Florian
    Pointcheval, David
    Sanders, Olivier
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT I, 2019, 11921 : 679 - 708
  • [24] A Loss Reportable E-cash Scheme without TTP Based on ECC
    Zhang, Xiaoping
    Zhong, Cheng
    INTERNATIONAL CONFERENCE ON MANAGEMENT OF E-COMMERCE AND E-GOVERNMENT, PROCEEDINGS, 2008, : 354 - 358
  • [25] A flexible date-attachment scheme on e-cash
    Chang, CC
    Lai, YP
    COMPUTERS & SECURITY, 2003, 22 (02) : 160 - 166
  • [26] Optimized E-cash Scheme and Its Formal Analysis
    Zhou, Xuanwu
    Fu, Yan
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEMS AND MATERIAL ENGINEERING, PTS 1-7, 2011, 204-210 : 1322 - +
  • [27] Compact e-cash
    Camenisch, J
    Hohenberger, S
    Lysyanskaya, A
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2005,PROCEEDINGS, 2005, 3494 : 302 - 321
  • [28] Amortized e-cash
    Liskov, M
    Micali, S
    FINANCIAL CRYTOGRAPHY, PROCEEDINGS, 2002, 2339 : 1 - 20
  • [29] Traceable e-cash
    Gemmell, PS
    IEEE SPECTRUM, 1997, 34 (02) : 35 - &
  • [30] Conditional e-cash
    Shi, Larry
    Carbunar, Bogdan
    Sion, Radu
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2007, 4886 : 15 - 28