Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles

被引:36
|
作者
Huegli, R. V. [1 ]
Duff, G. [1 ]
O'Conchuir, B. [1 ]
Mengotti, E. [2 ]
Fraile Rodriguez, A. [2 ]
Nolting, F. [2 ]
Heyderman, L. J. [2 ]
Braun, H. B. [1 ]
机构
[1] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
[2] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会; 爱尔兰科学基金会;
关键词
dimensional reduction; frustration; avalanches; artificial spin ice; magnetic monopoles; Dirac strings; HO2TI2O7; POINT; PHASE; NOISE; MODEL;
D O I
10.1098/rsta.2011.0538
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial spin-ice systems consisting of nanolithographic arrays of isolated nanomagnets are model systems for the study of frustration-induced phenomena. We have recently demonstrated that monopoles and Dirac strings can be directly observed via synchrotron-based photoemission electron microscopy, where the magnetic state of individual nanoislands can be imaged in real space. These experimental results of Dirac string formation are in excellent agreement with Monte Carlo simulations of the hysteresis of an array of dipoles situated on a kagome lattice with randomized switching fields. This formation of one-dimensional avalanches in a two-dimensional system is in sharp contrast to disordered thin films, where avalanches associated with magnetization reversal are two-dimensional. The self-organized restriction of avalanches to one dimension provides an example of dimensional reduction due to frustration. We give simple explanations for the origin of this dimensional reduction and discuss the disorder dependence of these avalanches. We conclude with the explicit demonstration of how these avalanches can be controlled via locally modified anisotropies. Such a controlled start and stop of avalanches will have potential applications in data storage and information processing.
引用
收藏
页码:5767 / 5782
页数:16
相关论文
共 50 条
  • [21] Thermally induced magnetic relaxation in building blocks of artificial kagome spin ice
    Farhan, Alan
    Kleibert, Armin
    Derlet, Peter M.
    Anghinolfi, Luca
    Balan, Ana
    Chopdekar, Rajesh V.
    Wyss, Marcus
    Gliga, Sebastian
    Nolting, Frithjof
    Heyderman, Laura J.
    PHYSICAL REVIEW B, 2014, 89 (21):
  • [22] Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays
    Moeller, G.
    Moessner, R.
    PHYSICAL REVIEW B, 2009, 80 (14)
  • [23] Direct observation of the ice rule in an artificial kagome spin ice
    Qi, Yi
    Brintlinger, T.
    Cumings, John
    PHYSICAL REVIEW B, 2008, 77 (09):
  • [24] Mass of Magnetic Monopoles and the Magnetic Susceptibility of Spin Ice
    Ryzhkin, M. I.
    Ryzhkin, I. A.
    JETP LETTERS, 2025, 121 (02) : 126 - 131
  • [25] Screening of the magnetic field by magnetic monopoles in spin ice
    Ryzhkin, I. A.
    Ryzhkin, M. I.
    JETP LETTERS, 2011, 93 (07) : 384 - 387
  • [26] Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice
    Farhan, Alan
    Saccone, Michael
    Petersen, Charlotte F.
    Dhuey, Scott
    Chopdekar, Rajesh, V
    Huang, Yen-Lin
    Kent, Noah
    Chen, Zuhuang
    Alava, Mikko J.
    Lippert, Thomas
    Scholl, Andreas
    van Dijken, Sebastiaan
    SCIENCE ADVANCES, 2019, 5 (02)
  • [27] Magnon Modes of Microstates and Microwave-Induced Avalanche in Kagome Artificial Spin Ice with Topological Defects
    Bhat, V. S.
    Watanabe, S.
    Baumgaertl, K.
    Kleibert, A.
    Schoen, M. A. W.
    Vaz, C. A. F.
    Grundler, D.
    PHYSICAL REVIEW LETTERS, 2020, 125 (11)
  • [28] Screening of the magnetic field by magnetic monopoles in spin ice
    I. A. Ryzhkin
    M. I. Ryzhkin
    JETP Letters, 2011, 93
  • [29] Spin-Wave Dynamics in an Artificial Kagome Spin Ice
    李求洋
    熊素琴
    陈丽娜
    周凯元
    项荣欣
    李浩天
    高振宇
    刘荣华
    都有为
    Chinese Physics Letters, 2021, 38 (04) : 135 - 139
  • [30] Spin-Wave Dynamics in an Artificial Kagome Spin Ice
    Li, Qiuyang
    Xiong, Suqin
    Chen, Lina
    Zhou, Kaiyuan
    Xiang, Rongxin
    Li, Haotian
    Gao, Zhenyu
    Liu, Ronghua
    Du, Youwei
    CHINESE PHYSICS LETTERS, 2021, 38 (04)