A Minimum Spanning Tree Problem in Uncertain Networks

被引:0
|
作者
He, FangGuo [1 ]
Shao, GuiMing [1 ]
机构
[1] Huanggang Normal Univ, Coll Math & Comp Sci, Huanggang, Peoples R China
关键词
Minimum spanning tree; network optimization; uncertain programming;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with a minimum spanning tree problem where each edge weight is a random variable. In order to solve the uncertain network optimization, the concept of the alpha-optimistic cost spanning tree is proposed and a stochastic optimization model is constructed according to the theory of stochastic programming. We adopted an efficient method to convert the stochastic optimization problem into the deterministic equivalent, and use Kruskal's algorithm to solve the problem. Finally, a numerical experiment is given to show the effectiveness of the proposed method.
引用
收藏
页码:677 / 683
页数:7
相关论文
共 50 条
  • [41] The minimum-area spanning tree problem
    Carmi, P
    Katz, MJ
    Mitchell, JSB
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2005, 3608 : 195 - 204
  • [42] Minimum Spanning Tree Cycle Intersection problem
    Dubinsky, Manuel
    Massri, Cesar
    Taubin, Gabriel
    DISCRETE APPLIED MATHEMATICS, 2021, 294 : 152 - 166
  • [43] RAMP for the capacitated minimum spanning tree problem
    Cesar Rego
    Frank Mathew
    Fred Glover
    Annals of Operations Research, 2010, 181 : 661 - 681
  • [44] On the complexity of the bilevel minimum spanning tree problem
    Buchheim, Christoph
    Henke, Dorothee
    Hommelsheim, Felix
    NETWORKS, 2022, 80 (03) : 338 - 355
  • [45] Stochastic quadratic minimum spanning tree problem
    Lu, Mei
    Gao, Jinwu
    Proceedings of the First International Conference on Information and Management Sciences, 2002, 1 : 179 - 183
  • [46] Parallel algorithms for minimum spanning tree problem
    Ahrabian, H
    Nowzari-Dalini, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (04) : 441 - 448
  • [47] Fully Retroactive Minimum Spanning Tree Problem
    De Andrade Júnior, JosCrossed D Sign© Wagner
    Duarte Seabra, Rodrigo
    Computer Journal, 2022, 65 (04): : 973 - 982
  • [48] The Minimum Centroid Branch Spanning Tree Problem
    Hao Lin
    Cheng He
    Journal of the Operations Research Society of China, 2024, 12 : 528 - 539
  • [49] ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM
    FRIEZE, AM
    DISCRETE APPLIED MATHEMATICS, 1985, 10 (01) : 47 - 56
  • [50] Fast reoptimization for the minimum spanning tree problem
    Boria, Nicolas
    Paschos, Vangelis Th.
    JOURNAL OF DISCRETE ALGORITHMS, 2010, 8 (03) : 296 - 310