The dynamical systems model of the simple genetic algorithm

被引:0
|
作者
Rowe, JE [1 ]
机构
[1] De Montfort Univ, Dept Informat & Comp Sci, Milton Keynes MK7 6HP, Bucks, England
关键词
population distribution; infinite population model; fixed points; finite population effects;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial describes the basic theory of the simple genetic algorithm, as developed by Michael Vose. The mathematical framework is established in which the actions of proportionate selection, mutation and crossover can be analysed. The results are illustrated through simple examples. The recently discovered connections between the mathematical form of the genetic operators and the Walsh transform are briefly described. Some current outstanding conjectures are also presented.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 50 条
  • [31] Meta-dynamical adaptive systems and their applications to a fractal algorithm and a biological model
    Moulay, E
    Baguelin, M
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 207 (1-2) : 79 - 90
  • [32] Approximately transitive dynamical systems and simple spectrum
    el Abdalaoui, E. H.
    Lemanczyk, M.
    ARCHIV DER MATHEMATIK, 2011, 97 (02) : 187 - 197
  • [33] Perturbations of Dynamical Systems on Simple Time Scales
    S. Yu. Pilyugin
    Lobachevskii Journal of Mathematics, 2023, 44 : 1215 - 1222
  • [34] Perturbations of Dynamical Systems on Simple Time Scales
    Pilyugin, S. Yu.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 1215 - 1222
  • [35] On the use of simple dynamical systems for climate predictions
    Crucifix, M.
    Rougier, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 174 : 11 - 31
  • [36] STABILITY AND PHASE PORTRAITS FOR SIMPLE DYNAMICAL SYSTEMS
    Kudelcikova, Maria
    Merciakova, Eva
    CIVIL AND ENVIRONMENTAL ENGINEERING, 2018, 14 (02) : 153 - 158
  • [37] Bifurcation and chaos in simple jerk dynamical systems
    Patidar, V
    Sud, KK
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (01): : 75 - 93
  • [38] Approximately transitive dynamical systems and simple spectrum
    E. H. el Abdalaoui
    M. Lemańczyk
    Archiv der Mathematik, 2011, 97 : 187 - 197
  • [39] Today's dynamical systems are too simple
    Jaeger, H
    BEHAVIORAL AND BRAIN SCIENCES, 1998, 21 (05) : 643 - +
  • [40] Bifurcation and chaos in simple jerk dynamical systems
    Vinod Patidar
    K. K. Sud
    Pramana, 2005, 64 : 75 - 93