Subfactors and quantum information theory

被引:3
|
作者
Naaijkens, Pieter [1 ,2 ]
机构
[1] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
[2] Rhein Westfal TH Aachen, JARA Inst Quantum Informat, Otto Blumenthal Str 20, D-52074 Aachen, Germany
来源
基金
欧盟地平线“2020”;
关键词
INDEX; CAPACITY; STATISTICS;
D O I
10.1090/conm/717/14453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider quantum information tasks in an operator algebraic setting, where we consider normal states on von Neumann algebras. In particular, we consider subfactors n subset of m, that is, unital inclusions of von Neumann algebras with trivial center. One can ask the following question: given a normal state omega on m, how much can one learn by only doing measurements from 91? We argue how the Jones index [m : n] can be used to give a quantitative answer to this, showing how the rich theory of subfactors can be used in a quantum information context. As an example we discuss how the Jones index can be used in the context of wiretap channels. Subfactors also occur naturally in physics. Here we discuss two examples: rational conformal field theories and Kitaev's toric code on the plane, a prototypical example of a topologically ordered model. There we can directly relate aspects of the general setting to physical properties such as the quantum dimension of the excitations. In the example of the toric code we also show how we can calculate the index via an approximation with finite dimensional systems. This explicit construction sheds more light on the connection between topological order and the Jones index.
引用
收藏
页码:257 / 279
页数:23
相关论文
共 50 条
  • [21] Quantum information theory and its application to quantum information processing
    Hirota, O
    CLEO(R)/PACIFIC RIM 2001, VOL I, TECHNICAL DIGEST, 2001, : 626 - 627
  • [22] Perturbation Theory for Quantum Information
    Grace, Michael R.
    Guha, Saikat
    2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 500 - 505
  • [23] Fundamentals of quantum information theory
    Keyl, M
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 369 (05): : 431 - 548
  • [24] Recoverability in quantum information theory
    Wilde, Mark M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2182):
  • [25] Quantum information theory - An invitation
    Werner, RF
    QUANTUM INFORMATION, 2001, 173 : 14 - 57
  • [26] The inequalities of quantum information theory
    Pippenger, N
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) : 773 - 789
  • [27] Quantum information and relativity theory
    Peres, A
    Terno, DR
    REVIEWS OF MODERN PHYSICS, 2004, 76 (01) : 93 - 123
  • [28] Information Dynamics in Quantum Theory
    Garbaczewski, Piotr
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2007, 1 (01): : 1 - 12
  • [29] Catalysis in quantum information theory
    Lipka-Bartosik, Patryk
    Wilming, Henrik
    Ng, Nelly H. Y.
    REVIEWS OF MODERN PHYSICS, 2024, 96 (02)
  • [30] Introduction to Quantum Information Theory
    Kerenidis, Iordanis
    INFORMATION THEORETIC SECURITY, 2009, 4883 : 146 - 147