Faster search by lackadaisical quantum walk

被引:32
|
作者
Wong, Thomas G. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, 2317 Speedway, Austin, TX 78712 USA
[2] Creighton Univ, Dept Phys, 2500 Calif Plaza, Omaha, NE 68178 USA
关键词
Quantum walk; Lackadaisical quantum walk; Spatial search;
D O I
10.1007/s11128-018-1840-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of O(1/log N) in O(root N log N) steps, which with amplitude amplification yields an overall runtime of O(root N log N). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4/N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in O(root N log N) steps, thus yielding an O(root log N) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Faster search by lackadaisical quantum walk
    Thomas G. Wong
    [J]. Quantum Information Processing, 2018, 17
  • [2] Lackadaisical quantum walk for spatial search
    Giri, Pulak Ranjan
    Korepin, Vladimir
    [J]. MODERN PHYSICS LETTERS A, 2020, 35 (08)
  • [3] Search by lackadaisical quantum walk with symmetry breaking
    Rapoza, Jacob
    Wong, Thomas G.
    [J]. PHYSICAL REVIEW A, 2021, 104 (06)
  • [4] Faster search of clustered marked states with lackadaisical quantum walks
    Amit Saha
    Ritajit Majumdar
    Debasri Saha
    Amlan Chakrabarti
    Susmita Sur-Kolay
    [J]. Quantum Information Processing, 21
  • [5] Faster search of clustered marked states with lackadaisical quantum walks
    Saha, Amit
    Majumdar, Ritajit
    Saha, Debasri
    Chakrabarti, Amlan
    Sur-Kolay, Susmita
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [6] Search algorithm on strongly regular graph by lackadaisical quantum walk
    Peng, Fangjie
    Li, Meng
    Sun, Xiaoming
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (13)
  • [7] Search on vertex-transitive graphs by lackadaisical quantum walk
    Mason L. Rhodes
    Thomas G. Wong
    [J]. Quantum Information Processing, 2020, 19
  • [8] Search on vertex-transitive graphs by lackadaisical quantum walk
    Rhodes, Mason L.
    Wong, Thomas G.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [9] On applying the lackadaisical quantum walk algorithm to search for multiple solutions on grids
    de Carvalho, Jonathan H. A.
    de Souza, Luciano S.
    de Paula Neto, Fernando M.
    Ferreira, Tiago A. E.
    [J]. INFORMATION SCIENCES, 2023, 622 : 873 - 888
  • [10] Faster quantum walk search on a weighted graph
    Wong, Thomas G.
    [J]. PHYSICAL REVIEW A, 2015, 92 (03):