Monte Carlo dynamics in global optimization

被引:6
|
作者
Chen, CN [1 ]
Chou, CI
Hwang, CR
Kang, J
Lee, TK
Li, SP
机构
[1] Acad Sinica, Inst Phys, Taipei, Taiwan
[2] Acad Sinica, Ctr Comp, Taipei 115, Taiwan
[3] Acad Sinica, Inst Math, Taipei, Taiwan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.2388
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Several very different optimization problems are studied by using the fixed-temperature Monte Carlo dynamics and found to share many common features. The most surprising result is that the cost function of these optimization problems itself is a very good stochastic variable to describe the complicated Monte Carlo processes. A multidimensional problem can therefore be mapped into a one-dimensional diffusion problem. This problem is either solved by direct numerical simulation or by using the Fokker-Planck equations. Above certain temperatures, the first passage time distribution functions of the original Monte Carlo processes are reproduced. At low temperatures, the first passage time has a path dependence and the single-stochastic-variable description is no longer valid. This analysis also provides a simple method to characterize the energy landscapes. [S1063-651X(99)06808-7].
引用
收藏
页码:2388 / 2393
页数:6
相关论文
共 50 条
  • [11] Annealing evolutionary stochastic approximation Monte Carlo for global optimization
    Faming Liang
    Statistics and Computing, 2011, 21 : 375 - 393
  • [12] Annealing evolutionary stochastic approximation Monte Carlo for global optimization
    Liang, Faming
    STATISTICS AND COMPUTING, 2011, 21 (03) : 375 - 393
  • [13] MONTE-CARLO DYNAMICS OF OPTIMIZATION PROBLEMS - A SCALING DESCRIPTION
    SIBANI, P
    PEDERSEN, JM
    HOFFMANN, KH
    SALAMON, P
    PHYSICAL REVIEW A, 1990, 42 (12): : 7080 - 7086
  • [14] Extended Monte Carlo Simulation for Parametric Global Sensitivity Analysis and Optimization
    Wei, Pengfei
    Lu, Zhenzhou
    Song, Jingwen
    AIAA JOURNAL, 2014, 52 (04) : 867 - 878
  • [15] Global Optimization for Stochastic Programming via Sequential Monte Carlo Sampling
    Ni, Wei
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 2070 - 2075
  • [16] A guided Monte Carlo search algorithm for global optimization of multidimensional functions?
    Delgoda, R
    Pulfer, JD
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (06): : 1087 - 1095
  • [17] Global optimization: Quantum thermal annealing with path integral Monte Carlo
    Lee, YH
    Berne, BJ
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (01): : 86 - 95
  • [18] LOCALIZATION OF SEARCH IN QUASI-MONTE-CARLO METHODS FOR GLOBAL OPTIMIZATION
    NIEDERREITER, H
    PEART, P
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 660 - 664
  • [19] Global Consensus Monte Carlo
    Rendell, Lewis J.
    Johansen, Adam M.
    Lee, Anthony
    Whiteley, Nick
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (02) : 249 - 259
  • [20] Evolutionary Optimization of Dynamics Models in Sequential Monte Carlo Target Tracking
    Johansson, Anders M.
    Lehmann, Eric A.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (04) : 879 - 894