Monte Carlo dynamics in global optimization

被引:6
|
作者
Chen, CN [1 ]
Chou, CI
Hwang, CR
Kang, J
Lee, TK
Li, SP
机构
[1] Acad Sinica, Inst Phys, Taipei, Taiwan
[2] Acad Sinica, Ctr Comp, Taipei 115, Taiwan
[3] Acad Sinica, Inst Math, Taipei, Taiwan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.2388
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Several very different optimization problems are studied by using the fixed-temperature Monte Carlo dynamics and found to share many common features. The most surprising result is that the cost function of these optimization problems itself is a very good stochastic variable to describe the complicated Monte Carlo processes. A multidimensional problem can therefore be mapped into a one-dimensional diffusion problem. This problem is either solved by direct numerical simulation or by using the Fokker-Planck equations. Above certain temperatures, the first passage time distribution functions of the original Monte Carlo processes are reproduced. At low temperatures, the first passage time has a path dependence and the single-stochastic-variable description is no longer valid. This analysis also provides a simple method to characterize the energy landscapes. [S1063-651X(99)06808-7].
引用
收藏
页码:2388 / 2393
页数:6
相关论文
共 50 条
  • [1] Bayesian Monte Carlo for the Global Optimization of Expensive Functions
    Groot, Perry
    Birlutiu, Adriana
    Heskes, Tom
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 249 - 254
  • [2] Monte Carlo methods in beam dynamics optimization problem
    Vladimirova, L. V.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2014, 10 (01): : 31 - 39
  • [3] Posterior exploration based sequential Monte Carlo for global optimization
    Liu, Bin
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 69 (04) : 847 - 868
  • [4] Mean-square optimization for global Monte Carlo algorithms
    G. A. Mikhailov
    I. N. Medvedev
    Doklady Mathematics, 2010, 82 : 514 - 518
  • [5] MONTE-CARLO SIMULATION AND GLOBAL OPTIMIZATION WITHOUT PARAMETERS
    HESSELBO, B
    STINCHCOMBE, RB
    PHYSICAL REVIEW LETTERS, 1995, 74 (12) : 2151 - 2155
  • [6] Monte Carlo basin paving: An improved global optimization method
    Zhan, LX
    Chen, JZY
    Liu, WK
    PHYSICAL REVIEW E, 2006, 73 (01):
  • [7] Average performance of quasi Monte Carlo methods for global optimization
    Al-Mharmah, HA
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 623 - 627
  • [8] Posterior exploration based sequential Monte Carlo for global optimization
    Bin Liu
    Journal of Global Optimization, 2017, 69 : 847 - 868
  • [9] Global Optimization of Centroidal Voronoi Tessellation with Monte Carlo Approach
    Lu, Lin
    Sun, Feng
    Pan, Hao
    Wang, Wenping
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (11) : 1880 - 1890
  • [10] Mean-Square Optimization for Global Monte Carlo Algorithms
    Mikhailov, G. A.
    Medvedev, I. N.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 514 - 518