Performance Limits of Lattice Reduction over Imaginary Quadratic Fields with Applications to Compute-and-Forward

被引:0
|
作者
Lyu, Shanxiang [1 ]
Porter, Christian [1 ]
Ling, Cong [1 ]
机构
[1] Imperial Coll London, Dept EEE, London SW7 2AZ, England
关键词
lattice reduction; algebraic; compute-and-forward;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bases in the complex field, along with direct-sums defined by rings of imaginary quadratic integers, induce algebraic lattices. In this work, we examine the properties and reduction of such lattices. Focusing on algebraic Lenstra-Lenstra-Lovasz (ALLL) reduction, we show that to satisfy Lovasz's condition requires the ring to be Euclidean. The proposed algorithm can be used to design network coding matrices in compute-and-forward (C&F).
引用
下载
收藏
页码:480 / 484
页数:5
相关论文
共 50 条
  • [31] Sums of three squares over imaginary quadratic fields
    Ji, Chungang
    Wang, Yuanhua
    Xu, Fei
    FORUM MATHEMATICUM, 2006, 18 (04) : 585 - 601
  • [32] On CM abelian varieties over imaginary quadratic fields
    Tonghai Yang
    Mathematische Annalen, 2004, 329 : 87 - 117
  • [33] Jacobi forms over imaginary quadratic number fields
    Skogman, H
    ACTA ARITHMETICA, 2001, 96 (04) : 333 - 350
  • [34] On Serre's conjecture over imaginary quadratic fields
    Torrey, Rebecca
    JOURNAL OF NUMBER THEORY, 2012, 132 (04) : 637 - 656
  • [35] PERFECT LATTICES OVER IMAGINARY QUADRATIC NUMBER FIELDS
    Braun, Oliver
    Coulangeon, Renaud
    MATHEMATICS OF COMPUTATION, 2015, 84 (293) : 1451 - 1467
  • [36] RAY CLASS INVARIANTS OVER IMAGINARY QUADRATIC FIELDS
    Jung, Ho Yun
    Koo, Ja Kyung
    Shin, Dong Hwa
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (03) : 413 - 426
  • [37] TRUNCATED EULER SYSTEMS OVER IMAGINARY QUADRATIC FIELDS
    Seo, Soogil
    NAGOYA MATHEMATICAL JOURNAL, 2009, 195 : 97 - 111
  • [38] On CM abelian varieties over imaginary quadratic fields
    Yang, TH
    MATHEMATISCHE ANNALEN, 2004, 329 (01) : 87 - 117
  • [39] On the cohomology of linear groups over imaginary quadratic fields
    Sikiric, Mathieu Dutour
    Gangl, Herbert
    Gunnells, Paul E.
    Hanke, Jonathan
    Schuermann, Achill
    Yasaki, Dan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (07) : 2564 - 2589
  • [40] Ring class invariants over imaginary quadratic fields
    Eum, Ick Sun
    Koo, Ja Kyung
    Shin, Dong Hwa
    FORUM MATHEMATICUM, 2016, 28 (02) : 201 - 217