Model for large-area monolayer coverage of polystyrene nanospheres by spin coating

被引:37
|
作者
Chandramohan, Abhishek [1 ]
Sibirev, Nikolai V. [2 ,3 ]
Dubrovskii, Vladimir G. [2 ,3 ,4 ]
Petty, Michael C. [1 ]
Gallant, Andrew J. [1 ,3 ]
Zeze, Dagou A. [1 ,3 ]
机构
[1] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[2] St Petersburg Acad Univ, St Petersburg 194021, Russia
[3] ITMO Univ, St Petersburg 197101, Russia
[4] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
PLASMON RESONANCE-SPECTRUM; PERIODIC ARRAY; LITHOGRAPHY; FABRICATION; CRYSTALS; NANOPARTICLES; MULTILAYERS;
D O I
10.1038/srep40888
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanosphere lithography, an inexpensive and high throughput technique capable of producing nanostructure (below 100 nm feature size) arrays, relies on the formation of a monolayer of self-assembled nanospheres, followed by custom-etching to produce nanometre size features on large-area substrates. A theoretical model underpinning the self-ordering process by centrifugation is proposed to describe the interplay between the spin speed and solution concentration. The model describes the deposition of a dense and uniform monolayer by the implicit contribution of gravity, centrifugal force and surface tension, which can be accounted for using only the spin speed and the solid/liquid volume ratio. We demonstrate that the spin recipe for the monolayer formation can be represented as a pathway on a 2D phase plane. The model accounts for the ratio of polystyrene nanospheres (300 nm), water, methanol and surfactant in the solution, crucial for large area uniform and periodic monolayer deposition. The monolayer is exploited to create arrays of nanoscale features using 'short' or 'extended' reactive ion etching to produce 30-60 nm (diameter) nanodots or 100-200 nm (diameter) nanoholes over the entire substrate, respectively. The nanostructures were subsequently utilized to create master stamps for nanoimprint lithography.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Fabrication of long-ranged close-packed monolayer of silica nanospheres by spin coating
    Khanna, Sakshum
    Utsav
    Marathey, Priyanka
    Chaliyawala, Harsh
    Rajaram, Narasimman
    Roy, Debmalya
    Banerjee, Rupak
    Mukhopadhyay, Indrajit
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 553 : 520 - 527
  • [32] Understanding Keesom Interactions in Monolayer-Based Large-Area Tunneling Junctions
    Chen, Jiahao
    Kim, Miso
    Gathiaka, Symon
    Cho, Soo Jin
    Kundu, Souvik
    Yoon, Hyo Jae
    Thuo, Martin M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (17): : 5078 - 5085
  • [33] Large-area Piezoceramic Coating with IDT Electrodes for Ultrasonic Sensing Applications
    Rathod, Vivek T.
    Mahapatra, D. Roy
    Jeyaseelan, A. Antony
    Dutta, Soma
    SMART SENSOR PHENOMENA, TECHNOLOGY, NETWORKS, AND SYSTEMS INTEGRATION 2013, 2013, 8693
  • [34] Single-crystal, large-area, fold-free monolayer graphene
    Meihui Wang
    Ming Huang
    Da Luo
    Yunqing Li
    Myeonggi Choe
    Won Kyung Seong
    Minhyeok Kim
    Sunghwan Jin
    Mengran Wang
    Shahana Chatterjee
    Youngwoo Kwon
    Zonghoon Lee
    Rodney S. Ruoff
    Nature, 2021, 596 : 519 - 524
  • [35] Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres
    Wang, Y.
    Chen, L.
    Yang, H.
    Guo, Q.
    Zhou, W.
    Tao, M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (01) : 85 - 91
  • [36] Large-area synthesis of a semiconducting silver monolayer via intercalation of epitaxial graphene
    Rosenzweig, Philipp
    Starke, Ulrich
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [37] Rapid Growth of Monolayer MoSe2 Films for Large-Area Electronics
    Zhang, Danzhen
    Wen, Chengyu
    Mcclimon, John Brandon
    Masih Das, Paul
    Zhang, Qicheng
    Leone, Grace A.
    Mandyam, Srinivas V.
    Drndic, Marija
    Johnson, Alan T. Charlie, Jr.
    Zhao, Meng-Qiang
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (06)
  • [38] Dual-Limit Growth of Large-Area Monolayer Transition Metal Dichalcogenides
    Xin, Zeqin
    Zhang, Xiaolong
    Guo, Jing
    Wu, Yonghuang
    Wang, Bolun
    Shi, Run
    Liu, Kai
    ACS NANO, 2024, 18 (10) : 7391 - 7401
  • [39] Dry Exfoliation of Large-Area 2D Monolayer and Heterostructure Arrays
    Li, Zhiwei
    Ren, Liwang
    Wang, Shiyu
    Huang, Xinxin
    Li, Qianyuan
    Lu, Zheyi
    Ding, Shuimei
    Deng, Hanjun
    Chen, Pingan
    Lin, Jun
    Hu, Yuanyuan
    Liao, Lei
    Liu, Yuan
    ACS NANO, 2021, 15 (08) : 13839 - 13846
  • [40] Single-crystal, large-area, fold-free monolayer graphene
    Wang, Meihui
    Huang, Ming
    Luo, Da
    Li, Yunqing
    Choe, Myeonggi
    Seong, Won Kyung
    Kim, Minhyeok
    Jin, Sunghwan
    Wang, Mengran
    Chatterjee, Shahana
    Kwon, Youngwoo
    Lee, Zonghoon
    Ruoff, Rodney S.
    NATURE, 2021, 596 (7873) : 519 - +