On the Bicomplex Generalized Tribonacci Quaternions

被引:12
|
作者
Kizilates, Can [1 ]
Catarino, Paula [2 ]
Tuglu, Naim [3 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Dept Math, Fac Art & Sci, TR-67100 Zonguldak, Turkey
[2] Univ Tras Os Montes & Alto Douro, Dept Math, P-5001801 Vila Real, Portugal
[3] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
来源
MATHEMATICS | 2019年 / 7卷 / 01期
关键词
bicomplex number; generalized tribonacci sequence; bicomplex generalized tribonacci quaternion;
D O I
10.3390/math7010080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the bicomplex generalized tribonacci quaternions. Furthermore, Binet's formula, generating functions, and the summation formula for this type of quaternion are given. Lastly, as an application, we present the determinant of a special matrix, and we show that the determinant is equal to the nth term of the bicomplex generalized tribonacci quaternions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Golden proportions for the generalized Tribonacci numbers
    Shah, Devbhadra V.
    Mehta, Darshana A.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2009, 40 (06) : 837 - 842
  • [32] On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions
    Flaut, Cristina
    Shpakivskyi, Vitalii
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 673 - 688
  • [33] Generalized Bicomplex Numbers and Lie Groups
    Sıddıka Özkaldı Karakuş
    Ferdag Kahraman Aksoyak
    Advances in Applied Clifford Algebras, 2015, 25 : 943 - 963
  • [34] Generalized Bicomplex Numbers and Lie Groups
    Karakus, Siddika Ozkaldi
    Aksoyak, Ferdag Kahraman
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (04) : 943 - 963
  • [35] On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions
    Cristina Flaut
    Vitalii Shpakivskyi
    Advances in Applied Clifford Algebras, 2013, 23 : 673 - 688
  • [36] Bicomplex generalized hypergeometric functions and their applications
    Bera, Snehasis
    Das, Sourav
    Banerjee, Abhijit
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 550 (01)
  • [37] GENERALIZED QUATERNIONS WITH QUATERNION COMPONENTS
    IAKIN, AL
    FIBONACCI QUARTERLY, 1977, 15 (04): : 350 - 352
  • [38] Generalized Dual Fibonacci Quaternions
    Yuce, Salim
    Aydin, Fugen Torunbalci
    APPLIED MATHEMATICS E-NOTES, 2016, 16 : 276 - 289
  • [39] GENERALIZED QUATERNIONS AND THEIR ALGEBRAIC PROPERTIES
    Jafari, Mehdi
    Yayli, Yusuf
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2015, 64 (01): : 15 - 27
  • [40] On Unrestricted Horadam Generalized Quaternions
    Senturk, Tuncay Deniz
    Dasdemir, Ahmet
    Bilgici, Goksal
    Unal, Zafer
    UTILITAS MATHEMATICA, 2019, 110 : 89 - 98