The efficiency of the second-order nonlinear least squares estimator and its extension

被引:11
|
作者
Kim, Mijeong [1 ]
Ma, Yanyuan [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Second-order least squares estimator; Heteroscedasticity; Moments; Semiparametric methods; SEMIPARAMETRIC ESTIMATORS; REGRESSION-MODELS;
D O I
10.1007/s10463-011-0332-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We revisit the second-order nonlinear least square estimator proposed in Wang and Leblanc (Anne Inst Stat Math 60:883-900, 2008) and show that the estimator reaches the asymptotic optimality concerning the estimation variability. Using a fully semiparametric approach, we further modify and extend the method to the heteroscedastic error models and propose a semiparametric efficient estimator in this more general setting. Numerical results are provided to support the results and illustrate the finite sample performance of the proposed estimator.
引用
收藏
页码:751 / 764
页数:14
相关论文
共 50 条
  • [21] Widely nonlinear quaternion-valued second-order Volterra recursive least squares filter
    Zhang, Zhao
    Zhang, Jiashu
    Li, Defang
    [J]. SIGNAL PROCESSING, 2023, 203
  • [22] Widely nonlinear quaternion-valued second-order Volterra recursive least squares filter
    Zhang, Zhao
    Zhang, Jiashu
    Li, Defang
    [J]. SIGNAL PROCESSING, 2023, 203
  • [23] CONSISTENCY OF LEAST-SQUARES ESTIMATOR AND ITS JACKKNIFE VARIANCE ESTIMATOR IN NONLINEAR MODELS
    SHAO, J
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (04): : 415 - 428
  • [24] Least-squares Galerkin procedure for second-order hyperbolic equations
    Guo, Hui
    Rui, Hongxing
    Lin, Chao
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (02) : 381 - 393
  • [25] Least-squares Galerkin procedure for second-order hyperbolic equations
    Hui Guo
    Hongxing Rui
    Chao Lin
    [J]. Journal of Systems Science and Complexity, 2011, 24 : 381 - 393
  • [26] Least-squares mixed method for second-order elliptic problems
    Kim, Y
    Lee, S
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 115 (2-3) : 89 - 100
  • [27] Second-order calibration: bilinear least squares regression and a simple alternative
    Linder, M
    Sundberg, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) : 159 - 178
  • [28] ON THE EVALUATION COMPLEXITY OF CONSTRAINED NONLINEAR LEAST-SQUARES AND GENERAL CONSTRAINED NONLINEAR OPTIMIZATION USING SECOND-ORDER METHODS
    Cartis, Coralia
    Gould, Nicholas I. M.
    Toint, Philippe L.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 836 - 851
  • [29] Partial Least Squares Path Modeling on Second-Order Latent Variable Evaluation Model and its Application
    Li, Yang
    Yi, Danhui
    Zhang, Huiyun
    [J]. PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 121 - 126
  • [30] Second-order approximation of the entropy in nonlinear least-squares estimation (vol 2, pg 187, 1994)
    Pronzato, L
    Pazman, A
    [J]. KYBERNETIKA, 1996, 32 (01) : 104 - 104