The efficiency of the second-order nonlinear least squares estimator and its extension

被引:11
|
作者
Kim, Mijeong [1 ]
Ma, Yanyuan [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Second-order least squares estimator; Heteroscedasticity; Moments; Semiparametric methods; SEMIPARAMETRIC ESTIMATORS; REGRESSION-MODELS;
D O I
10.1007/s10463-011-0332-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We revisit the second-order nonlinear least square estimator proposed in Wang and Leblanc (Anne Inst Stat Math 60:883-900, 2008) and show that the estimator reaches the asymptotic optimality concerning the estimation variability. Using a fully semiparametric approach, we further modify and extend the method to the heteroscedastic error models and propose a semiparametric efficient estimator in this more general setting. Numerical results are provided to support the results and illustrate the finite sample performance of the proposed estimator.
引用
收藏
页码:751 / 764
页数:14
相关论文
共 50 条