Dexamethasone-Loaded Poly(D, L-lactic acid) Microspheres/Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(ethylene glycol) Micelles Composite for Skin Augmentation

被引:17
|
作者
Fan, Min [1 ]
Liao, JinFeng [1 ]
Guo, Gang [1 ]
Ding, QiuXia [1 ]
Yang, Yi [1 ]
Luo, Feng [1 ]
Qian, ZhiYong [1 ]
机构
[1] Sichuan Univ, West China Hosp, West China Med Sch, State Key Lab Biotherapy & Canc Ctr, Chengdu 610041, Peoples R China
关键词
Microsphere; Dexamethasone; Micelles; Soft-Tissue Augmentation; IN-VITRO; DELIVERY; PLA; BIOCOMPATIBILITY; NANOPARTICLES; MICROSPHERES; DEGRADATION; NANOFIBERS; COPOLYMERS; DESIGN;
D O I
10.1166/jbn.2014.1832
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 mu m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vivo study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation.
引用
下载
收藏
页码:592 / 602
页数:11
相关论文
共 50 条
  • [21] Miscibility and biodegradability of poly(lactic acid) poly(ethylene oxide) and poly(lactic acid) poly(ethylene glycol) blends
    Yue, CL
    Kumar, RA
    Gross, RA
    McCarthy, SP
    ANTEC '96: PLASTICS - RACING INTO THE FUTURE, VOLS I-III: VOL I: PROCESSING; VOL II: MATERIALS; VOL III: SPACIAL AREAS, 1996, 42 : 1611 - 1615
  • [22] Relationship between the crystallization behavior of poly(ethylene glycol) and stereocomplex crystallization of poly(L-lactic acid)/poly(D-lactic acid)
    Luo, Chunyan
    Yang, Minrui
    Xiao, Wei
    Yang, Jingjing
    Wang, Yan
    Chen, Weixing
    Han, Xia
    POLYMER INTERNATIONAL, 2018, 67 (03) : 313 - 321
  • [23] Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid) alternating multiblock copolymers
    Huh, KM
    Bae, YH
    POLYMER, 1999, 40 (22) : 6147 - 6155
  • [24] Thermo-oxidative degradation of poly(ethylene glycol)/poly(L-lactic acid) blends
    Lai, WC
    Liau, WB
    POLYMER, 2003, 44 (26) : 8103 - 8109
  • [25] Preparation and Characterizations of RSPP050-Loaded Polymeric Micelles Using Poly(ethylene glycol)-b-Poly(ε-caprolactone) and Poly(ethylene glycol)-b-Poly(D,L-lactide)
    Eawsakul, Komgrit
    Chinavinijkul, Panarin
    Saeeng, Rungnapha
    Chairoungdua, Arthit
    Tuchinda, Patoomratana
    Nasongkla, Norased
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2017, 65 (06) : 530 - 537
  • [26] Polysorbate 80 coated poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) micelles for paclitaxel delivery
    Wang, YuJun
    Wang, Cheng
    Gong, ChangYang
    Wang, YingJing
    Guo, Gang
    Luo, Feng
    Qian, ZhiYong
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2012, 434 (1-2) : 1 - 8
  • [27] Self-assembled honokiol-loaded micelles based on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymer
    Wei, XiaWei
    Gong, ChangYang
    Shi, Shuai
    Fu, ShaoZhi
    Men, Ke
    Zeng, Shi
    Zheng, XiuLing
    Gou, MaLing
    Chen, LiJuan
    Qiu, LiYan
    Qian, ZhiYong
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2009, 369 (1-2) : 170 - 175
  • [28] In vitro evaluation of efficacy of dihydroartemisinin-loaded methoxy poly(ethylene glycol)/poly(l-lactic acid) amphiphilic block copolymeric micelles
    Lu, Wen-fen
    Chen, Shui-fang
    Wen, Zhi-yong
    Li, Qiang
    Chen, Jian-hai
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 128 (05) : 3084 - 3092
  • [29] Degradation of Poly(D,L-lactic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid) Copolymer by Electron Beam Radiation
    Miao, Peikai
    Zhao, Chun'e
    Xu, Guoliang
    Fu, Qiang
    Tang, Wenrui
    Zeng, Ke
    Wang, Yipeng
    Zhou, Hongfei
    Yang, Gang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (05) : 2981 - 2987
  • [30] Docetaxel-Loaded Mixed Micelles and Polymersomes Composed of Poly (caprolactone)-Poly (ethylene glycol) (PEG-PCL) and Poly (lactic acid)-Poly (ethylene glycol) (PEG-PLA): Preparation and In-vitro Characterization
    Khodaverdi, Elham
    Tayarani-Najaran, Zahra
    Minbashi, Elham
    Alibolandi, Mona
    Hossein, Javad
    Sepahi, Samaneh
    Kamali, Hossein
    Hadizadeh, Farzin
    IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH, 2019, 18 (01): : 142 - 155