Generic regularity of free boundaries for the obstacle problem

被引:26
|
作者
Figalli, Alessio [1 ]
Ros-Oton, Xavier [2 ,3 ,4 ]
Serra, Joaquim [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Raemistr 101, CH-8092 Zurich, Switzerland
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[4] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2020年 / 132卷 / 01期
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
D O I
10.1007/s10240-020-00119-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to establish generic regularity of free boundaries for the obstacle problem in R-n. By classical results of Caffarelli, the free boundary is C-infinity outside a set of singular points. Explicit examples show that the singular set could be in general(n-1)-dimensional-that is, as large as the regular set. Our main result establishes that, generically, the singular set has zeroHn-4 measure (in particular, it has codimension 3 inside the free boundary). Thus, for n <= 4, the free boundary is generically a C-infinity manifold. This solves a conjecture of Schaeffer (dating back to 1974) on the generic regularity of free boundaries in dimensions n <= 4.
引用
收藏
页码:181 / 292
页数:112
相关论文
共 50 条
  • [21] The variable coefficient thin obstacle problem: Optimal regularity and regularity of the regular free boundary
    Koch, Herbert
    Ruland, Angkana
    Shi, Wenhui
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 845 - 897
  • [22] Obstacle problems for integro-differential operators: Higher regularity of free boundaries
    Abatangelo, Nicola
    Ros-Oton, Xavier
    [J]. ADVANCES IN MATHEMATICS, 2020, 360
  • [23] Obstacle problems for integro-differential operators: regularity of solutions and free boundaries
    Luis Caffarelli
    Xavier Ros-Oton
    Joaquim Serra
    [J]. Inventiones mathematicae, 2017, 208 : 1155 - 1211
  • [24] Obstacle problems for integro-differential operators: regularity of solutions and free boundaries
    Caffarelli, Luis
    Ros-Oton, Xavier
    Serra, Joaquim
    [J]. INVENTIONES MATHEMATICAE, 2017, 208 (03) : 1155 - 1211
  • [25] On the regularity of an obstacle control problem
    Lou, HW
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) : 32 - 51
  • [26] Porosity of free boundaries in the obstacle problem for quasilinear elliptic equations
    JUN ZHENG
    ZHIHUA ZHANG
    PEIHAO ZHAO
    [J]. Proceedings - Mathematical Sciences, 2013, 123 : 373 - 382
  • [27] Properties of the free boundaries for the obstacle problem of the porous medium equations
    Kim, Sunghoon
    Lee, Ki-Ahm
    Park, Jinwan
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (01) : 209 - 235
  • [28] Porosity of free boundaries in the obstacle problem for quasilinear elliptic equations
    Zheng, Jun
    Zhang, Zhihua
    Zhao, Peihao
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03): : 373 - 382
  • [29] A note on the regularity of the free boundaries in the optimal partial transport problem
    Figalli, Alessio
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2009, 58 (02) : 283 - 286
  • [30] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Luis A. Caffarelli
    Sandro Salsa
    Luis Silvestre
    [J]. Inventiones mathematicae, 2008, 171 : 425 - 461