WEAK-TYPE INTERPOLATION FOR NONCOMMUTATIVE MAXIMAL OPERATORS

被引:12
|
作者
Dirksen, Sjoerd [1 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
关键词
Noncommutative symmetric spaces; Doob's maximal inequality; noncommutative maximal inequalities; interpolation theory; FUNCTION-SPACES; MARCINKIEWICZ; THEOREM;
D O I
10.7900/jot.2014mar12.2022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Boyd-type interpolation result for noncommutative maximal operators of restricted weak type. Our result positively answers an open question in T. Bekjan, Z. Chen, A. Osekowski, arXiv: 1108.2795 [math.O.A]. As a special case, we find a restricted weak type version of the noncommutative Marcinkiewicz interpolation theorem, due to lunge and Xu, with interpolation constant of optimal order.
引用
收藏
页码:515 / 532
页数:18
相关论文
共 50 条
  • [31] Weighted weak-type inequalities for generalized Hardy operators
    A. L. Bernardis
    F. J. Martín-Reyes
    P. Ortega Salvador
    [J]. Journal of Inequalities and Applications, 2006
  • [32] Weak-type Estimates in Morrey Spaces for Maximal Commutator and Commutator of Maximal Function
    Gogatishvili, Amiran
    Mustafayev, Rza
    Agcayazi, Mujdat
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (01) : 193 - 218
  • [33] TWO-WEIGHT WEAK-TYPE MAXIMAL INEQUALITIES FOR MARTINGALES
    任颜波
    侯友良
    [J]. Acta Mathematica Scientia, 2009, 29 (02) : 402 - 408
  • [34] MAXIMAL ESTIMATES ON MEASURE-SPACES FOR WEAK-TYPE MULTIPLIERS
    ASMAR, N
    BERKSON, E
    GILLESPIE, TA
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) : 167 - 179
  • [35] Two-weight weak-type inequalities for potential type operators
    Li Wen-ming
    Qi Jin-yun
    Zhang Ya-jing
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (03): : 313 - 318
  • [36] Weak-Type Lower Bounds for High-Dimensional Hardy–Littlewood Maximal Operators on Certain Measures via Averaging Operators
    F. J. Pérez Lázaro
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [37] INTERPOLATION THEOREMS FOR OPERATORS OF WEAK TYPE
    SHARPLEY, RC
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 779 - &
  • [38] TWO-WEIGHT WEAK-TYPE MAXIMAL INEQUALITIES FOR MARTINGALES
    Ren Yanbo
    Hou Youliang
    [J]. ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) : 402 - 408
  • [39] Two-weight weak-type inequalities for potential type operators
    LI Wen-ming1 QI Jin-yun2 ZHANG Ya-jing31 College of Math.and Inform.Sci.
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2008, (03) : 313 - 318
  • [40] Weak-type Endpoint Estimates for Multilinear Singular Integral Operators
    Dun Yan Yan
    Guo En Hu
    Jia Cheng Lan
    [J]. Acta Mathematica Sinica, 2005, 21 : 209 - 214