EXPONENTIAL DECAY FOR SOLUTIONS TO SEMILINEAR DAMPED WAVE EQUATION

被引:29
|
作者
Gerbi, Stephane [1 ]
Said-Houari, Belkacem [2 ]
机构
[1] Univ Savoie, Math Lab, F-73376 Le Bourget Du Lac, France
[2] KAUST, Div Math & Comp Sci & Engn, Thuwal 239556900, Saudi Arabia
关键词
Strong damping; stable set; global existence; decay rate; positive initial energy; GLOBAL-SOLUTIONS; NONEXISTENCE THEOREMS; EVOLUTION-EQUATIONS; CAUCHY-PROBLEM; BLOW-UP; EXISTENCE; INSTABILITY;
D O I
10.3934/dcdss.2012.5.559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Introducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
引用
收藏
页码:559 / 566
页数:8
相关论文
共 50 条
  • [31] Pullback Attractors for a Damped Semilinear Wave Equation with Delays
    Zhu, Kai Xuan
    Xie, Yong Qin
    Zhou, Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (07) : 1131 - 1150
  • [32] Pullback Attractors for a Damped Semilinear Wave Equation with Delays
    Kai Xuan ZHU
    Yong Qin XIE
    Feng ZHOU
    ActaMathematicaSinica, 2018, 34 (07) : 1131 - 1150
  • [33] Exponential attractors for the strongly damped wave equation
    Li, Ke
    Yang, Zhijian
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 155 - 165
  • [34] Pullback Attractors for a Damped Semilinear Wave Equation with Delays
    Kai Xuan ZHU
    Yong Qin XIE
    Feng ZHOU
    Acta Mathematica Sinica,English Series, 2018, 34 (07) : 1131 - 1150
  • [35] SEMILINEAR DAMPED WAVE EQUATION IN LOCALLY UNIFORM SPACES
    Michalek, Martin
    Prazak, Dalibor
    Slavik, Jakub
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1673 - 1695
  • [36] Exponential growth for a fractionally damped wave equation
    Kirane, M
    Tatar, NE
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (01): : 167 - 177
  • [37] On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities
    Messaoudi, Salim A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5114 - 5126
  • [38] Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities
    Messaoudi, Salim A.
    Al-Smail, Jamal H.
    Talahmeh, Ala A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) : 1863 - 1875
  • [39] Exponential decay for the semilinear wave equation with localized frictional and Kelvin-Voigt dissipating mechanisms
    Cavalcanti, Marcelo M.
    Gonzalez Martinez, Victor H.
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 273 - 293
  • [40] ON THE DECAY IN W1,∞ FOR THE 1D SEMILINEAR DAMPED WAVE EQUATION ON A BOUNDED DOMAIN
    Amadori, Debora
    Aqel, Fatima Al-Zahra
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5359 - 5396