Identification of Coronal Holes on AIA/SDO Images Using Unsupervised Machine Learning

被引:4
|
作者
Inceoglu, Fadil [1 ,2 ,3 ]
Shprits, Yuri Y. [1 ,4 ,5 ]
Heinemann, Stephan G. [6 ]
Bianco, Stefano [1 ]
机构
[1] GFZ German Res Ctr Geosci, Potsdam, Germany
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] NOAA, Natl Ctr Environm Informat, Boulder, CO 80305 USA
[4] Univ Potsdam, Inst Phys & Astron, Potsdam, Germany
[5] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
[6] Max Planck Inst Solar Syst Res, Gottingen, Germany
来源
ASTROPHYSICAL JOURNAL | 2022年 / 930卷 / 02期
关键词
BRIGHT POINTS; EVOLUTION; TRACKING;
D O I
10.3847/1538-4357/ac5f43
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Through its magnetic activity, the Sun governs the conditions in Earth's vicinity, creating space weather events, which have drastic effects on our space- and ground-based technology. One of the most important solar magnetic features creating the space weather is the solar wind that originates from the coronal holes (CHs). The identification of the CHs on the Sun as one of the source regions of the solar wind is therefore crucial to achieve predictive capabilities. In this study, we used an unsupervised machine-learning method, k-means, to pixel-wise cluster the passband images of the Sun taken by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory in 171, 193, and 211 angstrom in different combinations. Our results show that the pixel-wise k-means clustering together with systematic pre- and postprocessing steps provides compatible results with those from complex methods, such as convolutional neural networks. More importantly, our study shows that there is a need for a CH database where a consensus about the CH boundaries is reached by observers independently. This database then can be used as the "ground truth," when using a supervised method or just to evaluate the goodness of the models.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Language identification of character images using machine learning techniques
    Liu, YH
    Lin, CC
    Chang, F
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 630 - 634
  • [32] Identification of severe acute pediatric asthma phenotypes using unsupervised machine learning
    Rogerson, Colin
    Sanchez-Pinto, L. Nelson
    Gaston, Benjamin
    Wiehe, Sarah
    Schleyer, Titus
    Tu, Wanzhu
    Mendonca, Eneida
    PEDIATRIC PULMONOLOGY, 2024, 59 (12) : 3313 - 3321
  • [33] Identification of cognitive phenotypes in pediatric multiple sclerosis using unsupervised machine learning
    Mistri, D.
    Margoni, M.
    Meani, A.
    Moiola, L.
    Vizzino, C.
    Filippi, M.
    Rocca, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 364 - 364
  • [34] Identification of cognitive phenotypes in pediatric multiple sclerosis using unsupervised machine learning
    Mistri, Damiano
    Margoni, Monica
    Meani, Alessandro
    Moiola, Lucia
    Vizzino, Carmen
    Filippi, Massimo
    Rocca, Maria Assunta
    MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 23 - 24
  • [35] A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy
    Li, Xinyue
    Zhang, Yunting
    Jiang, Fan
    Zhao, Hongyu
    CHRONOBIOLOGY INTERNATIONAL, 2020, 37 (07) : 1002 - 1015
  • [36] Identification of Neuropsychological Phenotypes in Pediatric Multiple Sclerosis Using Unsupervised Machine Learning
    Mistri, Damiano
    Margoni, Monica
    Preziosa, Paolo
    Meani, Alessandro
    Vizzino, Carmen
    Moiola, Lucia
    Filippi, Massimo
    Rocca, Maria
    NEUROLOGY, 2023, 100 (17)
  • [37] IDENTIFICATION OF SEVERE ACUTE PEDIATRIC ASTHMA PHENOTYPES USING UNSUPERVISED MACHINE LEARNING
    Rogerson, Colin
    Sanchez-Pinto, L. Nelson
    Gaston, Benjamin
    Wiehe, Sarah
    Schleyer, Titus
    Tu, Wanzhu
    Mendonca, Eneida
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [38] Identifying Degradation Modes of Photovoltaic Modules Using Unsupervised Machine Learning on Electroluminescense Images
    Pierce, Benjamin G.
    Karimi, Ahmad Maroof
    Liu, Jiqi
    French, Roger H.
    Braid, Jennifer L.
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1850 - 1855
  • [39] Statistical Analysis and Catalog of Non-polar Coronal Holes Covering the SDO-Era Using CATCH
    Heinemann, Stephan G.
    Temmer, Manuela
    Heinemann, Niko
    Dissauer, Karin
    Samara, Evangelia
    Jercic, Veronika
    Hofmeister, Stefan J.
    Veronig, Astrid M.
    SOLAR PHYSICS, 2019, 294 (10)
  • [40] Statistical Analysis and Catalog of Non-polar Coronal Holes Covering the SDO-Era Using CATCH
    Stephan G. Heinemann
    Manuela Temmer
    Niko Heinemann
    Karin Dissauer
    Evangelia Samara
    Veronika Jerčić
    Stefan J. Hofmeister
    Astrid M. Veronig
    Solar Physics, 2019, 294