Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models

被引:9
|
作者
Oliveira, Tamara Rebecca A. [1 ]
Carvalho, Helio Wilson L. [2 ]
Nascimento, Moyses [3 ]
Costa, Emiliano Fernandes N. [2 ]
Oliveira, Gustavo Hugo F. [1 ]
Gravina, Geraldo A. [4 ]
Amaral Junior, Antonio T. [4 ]
Carvalho Filho, Jose Luiz S. [5 ]
机构
[1] Univ Fed Sergipe, Nucleo Grad Agron, Campus Sertao, Nossa Senhora Da Gloria, Sergipe, Brazil
[2] Embrapa Tabuleiros Costeiros, Aracaju, Sergipe, Brazil
[3] Univ Fed Vicosa, Dept Estat, Lab Inteligencia Computac & Aprendizado Estat, Vicosa, MG, Brazil
[4] Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol Agr, Lab Engn Agr, Rio De Janeiro, Brazil
[5] Univ Fed Rural Pernambuco, Dept Agron, Recife, PE, Brazil
来源
PLOS ONE | 2020年 / 15卷 / 07期
关键词
CENTROID METHOD; SELECTION; CULTIVAR;
D O I
10.1371/journal.pone.0236571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Bayesian segmented regression model to evaluate the adaptability and stability of maize in Northeastern Brazil
    Xia, Xiangsheng
    Shu, Dayu
    Yang, Echuan
    Hu, Chuankai
    Cardoso, Milton Jose
    Oliveira, Gustavo Hugo Ferreira
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2023, 23 (03):
  • [2] Bayesian segmented regression model for adaptability and stability evaluation of cotton genotypes
    Moysés Nascimento
    Ana Carolina Campana Nascimento
    Fabyano Fonseca e Silva
    Paulo Eduardo Teodoro
    Camila Ferreira Azevedo
    Tâmara Rebecca Albuquerque de Oliveira
    Antônio Teixeira do Amaral Junior
    Cosme Damião Cruz
    Francisco José Correia Farias
    Luiz Paulo de Carvalho
    Euphytica, 2020, 216
  • [3] Bayesian segmented regression model for adaptability and stability evaluation of cotton genotypes
    Nascimento, Moyses
    Nascimento, Ana Carolina Campana
    E Silva, Fabyano Fonseca
    Teodoro, Paulo Eduardo
    Azevedo, Camila Ferreira
    de Oliveira, Tamara Rebecca Albuquerque
    do Amaral Junior, Antonio Teixeira
    Cruz, Cosme Damiao
    Farias, Francisco Jose Correia
    de Carvalho, Luiz Paulo
    EUPHYTICA, 2020, 216 (02)
  • [4] AMMI Bayesian Models to Study Stability and Adaptability in Maize
    Yanes Bernardo Junior, Luiz Antonio
    da Silva, Carlos Pereira
    de Oliveira, Luciano Antonio
    Nuvunga, Joel Jorge
    Miranda Pires, Luiz Paulo
    Von Pinho, Renzo Garcia
    Balestre, Marcio
    AGRONOMY JOURNAL, 2018, 110 (05) : 1765 - 1776
  • [5] A comprehensive evaluation of the adaptability and stability of promising maize hybrids in Indonesia using different stability approaches
    Priyanto, Slamet Bambang
    Iriany, Rafidah Neni
    Makkulawu, Andi Takdir
    Jumadi, Oslan
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2024, 84 (03): : 338 - 348
  • [6] Adaptability and stability of maize hybrids using the Eberhart and Russell and AMMI models in subtropical environments
    da Rosa, Guilherme Bergeijer
    Follmann, Diego Nicolau
    Pereira, Anderson Crestani
    Bolzan, Felipe Tascheto
    Marchioro, Volmir Sergio
    Maldaner, Ivan Carlos
    CIENCIA E AGROTECNOLOGIA, 2024, 48
  • [7] Adaptability and stability of maize hybrids in unreplicated multienvironment trials
    dos Santos, Diego Coelho
    Pereira, Carlos Henrique
    Rodrigues Nunes, Jose Airton
    Lepre, Andre Luiz
    REVISTA CIENCIA AGRONOMICA, 2019, 50 (01): : 83 - 89
  • [8] Adaptability and stability analyses of plants using random regression models
    de Souza, Michel Henriques
    Pereira Junior, Jose Domingos
    Steckling, Skarlet De Marco
    Mencalha, Jussara
    Dias, Fabiola dos Santos
    Santos de Carvalho Rocha, Joao Romero do Amaral
    Souza Carneiro, Pedro Crescencio
    de Souza Carneiro, Jose Eustaquio
    PLOS ONE, 2020, 15 (12):
  • [9] Evaluation of stability in maize hybrids using univariate parametric methods
    Shojaei S.H.
    Mostafavi K.
    Lak A.
    Omrani A.
    Omrani S.
    Mousavi S.M.N.
    Illés Á.
    Bojtor C.
    Nagy J.
    Journal of Crop Science and Biotechnology, 2022, 25 (3) : 269 - 276
  • [10] Application of mixed models for evaluating stability and adaptability of maize using unbalanced data
    André Gradowski de Figueiredo
    Renzo Garcia Von Pinho
    Heyder Diniz Silva
    Marcio Balestre
    Euphytica, 2015, 202 : 393 - 409