HybridSDF: Combining Deep Implicit Shapes and Geometric Primitives for 3D Shape Representation and Manipulation

被引:1
|
作者
Vasu, Subeesh [1 ]
Talabot, Nicolas [1 ]
Lukoianov, Artem [1 ,2 ]
Baque, Pierre [2 ]
Donier, Jonathan [2 ]
Fua, Pascal [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CVLab, Lausanne, Switzerland
[2] Neural Concept, Lausanne, Switzerland
来源
2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV | 2022年
关键词
D O I
10.1109/3DV57658.2022.00072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep implicit surfaces excel at modeling generic shapes but do not always capture the regularities present in manufactured objects, which is something simple geometric primitives are particularly good at. In this paper, we propose a representation combining latent and explicit parameters that can be decoded into a set of deep implicit and geometric shapes that are consistent with each other. As a result, we can effectively model both complex and highly regular shapes that coexist in manufactured objects. This enables our approach to manipulate 3D shapes in an efficient and precise manner.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 50 条
  • [41] 3D Deep Shape Descriptor
    Fang, Yi
    Xie, Jin
    Dai, Guoxian
    Wang, Meng
    Zhu, Fan
    Xu, Tiantian
    Wong, Edward
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2319 - 2328
  • [42] Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes
    Wang, Peng-Shuai
    Sun, Chun-Yu
    Liu, Yang
    Tong, Xin
    SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [43] Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes
    Wang, Peng-Shuai
    Sun, Chun-Yu
    Liu, Yang
    Tong, Xin
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [44] 3D capture, representation and manipulation of cuneiform tablets
    Woolley, SI
    Flowers, NJ
    Arvanitis, TN
    Livingstone, A
    Davis, TR
    Ellison, J
    THREE-DIMENSIONAL IMAGE CAPTURE AND APPLICATIONS IV, 2001, 4298 : 103 - 110
  • [45] Texture synthesis for 3D shape representation
    Gorla, G
    Interrante, V
    Sapiro, G
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2003, 9 (04) : 512 - 524
  • [46] Medial Axis for 3D Shape Representation
    Qiu, Wei
    Sakai, Ko
    NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 79 - +
  • [47] 3D Shape Co-segmentation by Combining Sparse Representation with Extreme Learning Machine
    Li, Hongyan
    Sun, Zhengxing
    Li, Qian
    Shi, Jinlong
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 570 - 581
  • [48] Identifying Virtual 3D Geometric Shapes with a Vibrotactile Glove
    Martinez, Jonatan
    Garcia, Arturo
    Oliver, Miguel
    Pascual Molina, Jose
    Gonzalez, Pascual
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2016, 36 (01) : 42 - 51
  • [49] A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES
    Mesmoudi, Mohammed Mostefa
    De Floriani, Leila
    Magillo, Paola
    GRAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2010, : 90 - +
  • [50] Comparison of organs' shapes with geometric and Zernike 3D moments
    Broggio, D.
    Moignier, A.
    Ben Brahim, K.
    Gardumi, A.
    Grandgirard, N.
    Pierrat, N.
    Chea, M.
    Derreumaux, S.
    Desbree, A.
    Boisserie, G.
    Aubert, B.
    Mazeron, J. -J.
    Franck, D.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 111 (03) : 740 - 754