Interpretable machine learning models for predicting and explaining vehicle fuel consumption anomalies

被引:10
|
作者
Barbado, Alberto [1 ,2 ]
Corcho, Oscar [1 ]
机构
[1] Univ Politecn Madrid, Dept Inteligencia Artificial, Madrid, Spain
[2] Tele IoT & Big Data Tech SA, Madrid, Spain
关键词
Explainable artificial intelligence; Interpretable machine learning; Vehicle fuel consumption; Explainable boosting machine; Generalized additive models; Explainable artificial intelligence metrics;
D O I
10.1016/j.engappai.2022.105222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying anomalies in the fuel consumption of vehicle fleets is crucial for optimizing consumption and reducing costs. However, this information alone is insufficient since fleet operators need to know the causes behind anomalous fuel consumption. Therefore, we combine unsupervised anomaly detection techniques, domain knowledge and interpretable Machine Learning models for explaining potential causes of abnormal fuel consumption in terms of feature relevance. The explanations are used for generating recommendations about fuel optimization that are adjusted according to two different user profiles: fleet managers and fleet operators. Results are evaluated over real-world data from telematics devices connected to diesel and petrol vehicles from different types of industrial vehicle fleets. We carry out an evaluation through model performance and Explainable AI metrics that compare the explanations in terms of representativeness, fidelity, stability, contrastiveness and consistency with prior beliefs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Predicting Fuel Consumption and Emissions Using GPS-Based Machine Learning Models for Gasoline and Diesel Vehicles
    Alazemi, Fahd
    Alazmi, Asmaa
    Alrumaidhi, Mubarak
    Molden, Nick
    SUSTAINABILITY, 2025, 17 (06)
  • [22] Interpretable Machine Learning Models for Predicting Cesarean Delivery in Class III Obese Cohorts
    Bennett, Rachel
    Pierce, Stephanie L.
    Razzaghi, Talayeh
    IEEE ACCESS, 2025, 13 : 41230 - 41247
  • [23] Prediction of energy consumption for new electric vehicle models by machine learning
    Fukushima, Arika
    Yano, Toru
    Imahara, Shuichiro
    Aisu, Hideyuki
    Shimokawa, Yusuke
    Shibata, Yasuhiro
    IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (09) : 1174 - 1180
  • [24] Fuel Consumption Prediction Models Based on Machine Learning and Mathematical Methods
    Xie, Xianwei
    Sun, Baozhi
    Li, Xiaohe
    Olsson, Tobias
    Maleki, Neda
    Ahlgren, Fredrik
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (04)
  • [25] Interpretable models for extrapolation in scientific machine learning
    Muckley, Eric S.
    Saal, James E.
    Meredig, Bryce
    Roper, Christopher S.
    Martin, John H.
    DIGITAL DISCOVERY, 2023, 2 (05): : 1425 - 1435
  • [26] Interpretable machine learning models for crime prediction
    Zhang, Xu
    Liu, Lin
    Lan, Minxuan
    Song, Guangwen
    Xiao, Luzi
    Chen, Jianguo
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2022, 94
  • [27] Predicting Alzheimer's Disease with Interpretable Machine Learning
    Jia, Maoni
    Wu, Yafei
    Xiang, Chaoyi
    Fang, Ya
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2023, 52 (04) : 249 - 257
  • [28] Predicting systemic financial risk with interpretable machine learning
    Tang, Pan
    Tang, Tiantian
    Lu, Chennuo
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2024, 71
  • [29] Interpretable Machine Learning-Tools to Interpret the Predictions of a Machine Learning Model Predicting the Electrical Energy Consumption of an Electric Arc Furnace
    Carlsson, Leo Stefan
    Samuelsson, Peter Bengt
    Jonsson, Par Goran
    STEEL RESEARCH INTERNATIONAL, 2020, 91 (11)
  • [30] Predicting graft and patient outcomes following kidney transplantation using interpretable machine learning models
    Salaun, Achille
    Knight, Simon
    Wingfield, Laura
    Zhu, Tingting
    SCIENTIFIC REPORTS, 2024, 14 (01):