Harmonicity of unit vector fields with respect to Riemannian g-natural metrics

被引:24
|
作者
Abbassi, M. T. K. [2 ]
Calvaruso, G. [1 ]
Perrone, D. [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[2] Univ Sidi Mohamed Ben Abdallah, Dept Math, Fac Sci Dhart El Mahraz, Fes, Fes, Morocco
关键词
Harmonic vector fields; Unit tangent sphere bundle; g-natural metrics; Reeb vector field; MANIFOLDS; 3-MANIFOLDS; MAPPINGS; BUNDLES; ENERGY;
D O I
10.1016/j.difgeo.2008.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a compact Riemannian manifold and T1M its unit tangent sphere bundle. Unit vector fields defining harmonic maps from (M, g) to (T1M, (g) over bar (s)), (g) over bar (s) being the Sasaki metric on T1M, have been extensively studied. The Sasaki metric, and other well known Riemannian metrics on T1M, are particular examples of g-natural metrics. We equip T1M with an arbitrary Riemannian g-natural metric (G) over bar, anti investigate the harmonicity of a unit vector field V of M, thought as a map from (M, g) to (T1M, (G) over bar). We then apply this study to characterize unit Killing vector fields and to investigate harmonicity properties of the Reeb vector field of a contact metric manifold. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 49 条
  • [41] A Note on the Infimum of Energy of Unit Vector Fields on a Compact Riemannian Manifold
    Giovanni Nunes
    Jaime Ripoll
    Journal of Geometric Analysis, 2008, 18 : 1088 - 1097
  • [42] A note on the infimum of energy of unit vector fields on a compact riemannian manifold
    Nunes, Giovanni
    Ripoll, Jaime
    JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) : 1088 - 1097
  • [43] Energy and volume of unit vector fields on three-dimensional Riemannian manifolds
    González-Dávila, JC
    Vanhecke, L
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2002, 16 (03) : 225 - 244
  • [44] STATISTICAL STRUCTURES AND KILLING VECTOR FIELDS ON TANGENT BUNDLES WITH RESPECT TO TWO DIFFERENT METRICS
    Altunbas, Murat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2023, 72 (03): : 815 - 825
  • [45] Local Symmetry of Unit Tangent Sphere Bundle with g-Natural Almost Contact B-metric Structure
    Firuzi, Farshad
    Fakhri, Yousef Alipour
    Peyghan, Esmaeil
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2019, 14 (02): : 93 - 104
  • [46] A Geometric Approach to the Harmonicity of the Unit Frenet-Serret Vector Fields in a Minkowski Space E-1(3)
    Korpinar, Talat
    Demirkol, Ridvan Cem
    Asil, Vedat
    JOURNAL OF ADVANCED PHYSICS, 2018, 7 (03) : 359 - 365
  • [47] Ong-Natural Conformal Vector Fields on Unit Tangent Bundles
    Kadaoui Abbassi, Mohamed Tahar
    Amri, Noura
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 75 - 109
  • [48] ON KILLING VECTOR FIELDS ON A TANGENT BUNDLE WITH g- NATURAL METRIC. PART II
    Ewert-Krzemieniewski, Stanislaw
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (01): : 53 - 76
  • [49] Minimal and harmonic unit vector fields in G2(Cm+2) and its dual space
    Tsukada, K
    Vanhecke, L
    MONATSHEFTE FUR MATHEMATIK, 2000, 130 (02): : 143 - 154