Modeling of Retrial Queueing System GI/G/m/0/ /1/G by the Monte Carlo Method

被引:0
|
作者
Dyshliuk, O. N. [1 ]
Koba, E. V. [2 ]
Pustova, S. V. [3 ]
机构
[1] Natl Aviat Univ, Dept Comp Control Syst, Kiev, Ukraine
[2] Natl Acad Sci Ukraine, VM Glushkov Cybernet Inst, Kiev, Ukraine
[3] Natl Aviat Univ, Kiev, Ukraine
关键词
multichannel retrial queueing system; recurrent input flow; orbit of single capacity; distribution functions; intervals between moments of calls arrival; service and sojourn times of retrials; algorithm of statistical modeling; estimate of stationary probability of calls loss;
D O I
10.1615/JAutomatInfScien.v45.i10.20
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multichannel retrial queueing system GI/G/m/0/ /1/G (with recurrent input flow and orbit of single capacity) is under consideration. Distribution functions of intervals between moments of calls arrival to system, service and sojourn times of retrials have general form. We suggest algorithm of statistical modeling of such system in order to estimate stationary probability of calls loss. Numerical and graphical results are given.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 50 条
  • [41] STEADY STATE ANALYSIS OF M/G/1 RETRIAL QUEUEING MODEL WITH RESTRICTED ADMISSION AND SERVER BREAKDOWN
    Rathnakumari, E.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 421 - 434
  • [42] Estimation of available bandwidth for an M/G/1 queueing system
    Nam, Seung Yeob
    Kim, Sunggon
    Sung, Dan Keun
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (08) : 3299 - 3308
  • [43] An M/G/1 queueing system with fixed feedback policy
    Choi, BD
    Kim, B
    ANZIAM JOURNAL, 2002, 44 : 283 - 297
  • [44] An optimal age maintenance for an M/G/1 queueing system
    Koyanagi, J
    Kawai, H
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 38 (11-13) : 1333 - 1338
  • [45] Generalized Mx/G(M/G)/1(M/G) repairable queueing system (II). Some reliability indices
    Tang, Yinghui
    Tang, Xiaowo
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2000, 20 (02): : 84 - 91
  • [46] IMBEDDED MARKOV CHAINS IN QUEUEING SYSTEMS M/G/1 AND GI/M/1 WITH LIMITED WAITING ROOM
    BHAT, UN
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (02): : 540 - &
  • [47] Modeling rate-adaptive Wireless LAN with an M/G/1/B queueing system
    Burmeister, C
    Killat, U
    Bachmann, J
    Proceedings of the Fourth IASTED International Conference on Communication Systems and Networks, 2005, : 49 - 54
  • [48] New approach to estimate the gradient of the GI/G/m queueing systems
    Liu, Ruihua
    Tu, Fengsheng
    Zidonghua Xuebao/Acta Automatica Sinica, 1995, 21 (06): : 696 - 705
  • [49] GI / G / 1 Lakatos-Type Queueing System with T-Retrials
    O. V. Koba
    S. V. Serebriakova
    Cybernetics and Systems Analysis, 2021, 57 : 279 - 288
  • [50] GI / G / 1 Lakatos-Type Queueing System with T-Retrials
    Koba, O., V
    Serebriakova, S., V
    CYBERNETICS AND SYSTEMS ANALYSIS, 2021, 57 (02) : 279 - 288