Water management in a passive direct methanol fuel cell

被引:25
|
作者
Oliveira, Vania B. [1 ]
Falcao, Daniela S. [1 ]
Rangel, Carmen M. [2 ]
Pinto, Alexandra M. F. R. [1 ]
机构
[1] Univ Porto, Fac Engn, Dept Eng Quim, Ctr Estudos Fenomenos Transporte, P-4200465 Oporto, Portugal
[2] Lab Nacl Energia & Geol, Lisbon, Portugal
关键词
passive direct methanol fuel cell; modelling; water crossover; net water transport coefficient; fuel cell performance; MASS-TRANSPORT; CURRENT COLLECTOR; PERFORMANCE; CROSSOVER; DMFC; MODEL;
D O I
10.1002/er.2902
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Passive direct methanol fuel cells (DMFCs) are under development for use in portable applications because of their enhanced energy density in comparison with other fuel cell types. The most significant obstacles for DMFC development are methanol and water crossover because methanol diffuses through the membrane generating heat but no power. The presence of a large amount of water floods the cathode and reduces cell performance. The present study was carried out to understand the performance of passive DMFCs, focused on the water crossover through the membrane from the anode to the cathode side. The water crossover behaviour in passive DMFCs was studied analytically with the results of a developed model for passive DMFCs. The model was validated with an in-house designed passive DMFC. The effect of methanol concentration, membrane thickness, gas diffusion layer material and thickness and catalyst loading on fuel cell performance and water crossover is presented. Water crossover was lowered with reduction on methanol concentration, reduction of membrane thickness and increase on anode diffusion layer thickness and anode and cathode catalyst layer thickness. It was found that these conditions also reduced methanol crossover rate. A membrane electrode assembly was proposed to achieve low methanol and water crossover and high power density, operating at high methanol concentrations. The results presented provide very useful and actual information for future passive DMFC systems using high concentration or pure methanol. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:991 / 1001
页数:11
相关论文
共 50 条
  • [31] Development of a passive direct methanol fuel cell stack for portable applications
    Shimizu, T
    Mohamedi, M
    Momma, T
    Osaka, T
    ELECTROCHEMISTRY, 2004, 72 (09) : 637 - 640
  • [32] Searching for suitable catalysts for a passive direct methanol fuel cell cathode
    Asteazaran, M.
    Cespedes, G.
    Moreno, M. S.
    Bengio, S.
    Castro Luna, A. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (42) : 14632 - 14639
  • [33] Behavioral pattern of a monopolar passive direct methanol fuel cell stack
    Kim, Young-Jin
    Bae, Byungchan
    Scibioh, M. Aulice
    Cho, EunAe
    Ha, Heung Yong
    JOURNAL OF POWER SOURCES, 2006, 157 (01) : 253 - 259
  • [34] Effect of cell orientation on the performance of passive direct methanol fuel cells
    Chen, R.
    Zhao, T. S.
    Liu, J. G.
    JOURNAL OF POWER SOURCES, 2006, 157 (01) : 351 - 357
  • [35] DEVELOPMENT OF MEMBRANE ELECTRODE ASSEMBLY FOR PASSIVE DIRECT METHANOL FUEL CELL
    Lisboa Ferreira, Eli Carlos
    Quadros, Fabricio Monteiro
    Iudice de Souza, Jose Pio
    Tanaka, Auro Atsushi
    QUIMICA NOVA, 2010, 33 (06): : 1313 - 1319
  • [36] Passive direct methanol fuel cells fed with methanol vapor
    Kim, HaeKyoung
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 1232 - 1235
  • [37] Enhanced Water Management and Fuel Efficiency of a Fully Passive Direct Methanol Fuel Cell With Super-Hydrophilic/-Hydrophobic Cathode Porous Flow-Field
    Yuan, Wei
    Han, Fuchang
    Chen, Yu
    Chen, Wenjun
    Hu, Jinyi
    Tang, Yong
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (03)
  • [38] Characteristics of heat and mass transport in a passive direct methanol fuel cell operated with concentrated methanol
    He, Ya-Ling
    Miao, Zheng
    Yang, Wei-Wei
    JOURNAL OF POWER SOURCES, 2012, 208 : 180 - 186
  • [39] Investigating design parameter effects on the methanol flux in the passive storage of a direct methanol fuel cell
    Kamaruddin, M. Z. F.
    Kamarudin, S. K.
    Masdar, M. S.
    Daud, W. R. W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) : 11931 - 11942
  • [40] Study on operational aspects of a passive direct methanol fuel cell incorporating an anodic methanol barrier
    Yuan, Wei
    Deng, Jun
    Zhang, Zhaochun
    Yang, Xiaojun
    Tang, Yong
    RENEWABLE ENERGY, 2014, 62 : 640 - 648