A Taxonomy of Methods for Visualizing Pareto Front Approximations

被引:16
|
作者
Filipic, Bogdan [1 ]
Tusar, Tea [1 ]
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, Ljubljana, Slovenia
关键词
multiobjective optimization; visualization methods; taxonomy; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1145/3205455.3205607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multiobjective optimization, many techniques are used to visualize the results, ranging from traditional general-purpose data visualization techniques to approaches tailored to the specificities of multiobjective optimization. The number of specialized approaches rapidly grows in the recent years. To assist both the users and developers in this field, we propose a taxonomy of methods for visualizing Pareto front approximations. It builds on the nature of the visualized data and the properties of visualization methods rather than on the employed visual representations. It covers the methods for visualizing individual approximation sets resulting from a single algorithm run as well as multiple approximation sets produced in repeated runs. The proposed taxonomy categories are characterized and illustrated with selected examples of visualization methods. We expect that proposed taxonomy will be insightful to the multiobjective optimization community, make the communication among the participants easier and help focus further development of visualization methods.
引用
收藏
页码:649 / 656
页数:8
相关论文
共 50 条
  • [41] Preprocessing Imprecise Points for the Pareto Front
    van der Hoog, Ivor
    Kostitsyna, Irina
    Loffler, Maarten
    Speekinann, Bettina
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3144 - 3167
  • [42] Evolved GANs for generating Pareto set approximations
    Garciarena, Unai
    Santana, Roberto
    Mendiburu, Alexander
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 434 - 441
  • [43] Regular Pareto Front Shape is not Realistic
    Ishibuchi, Hisao
    He, Linjun
    Shang, Ke
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2034 - 2041
  • [44] From a Pareto Front to Pareto Regions: A Novel Standpoint for Multiobjective Optimization
    Rebello, Carine M.
    Martins, Marcio A. F.
    Santana, Daniel D.
    Rodrigues, Alirio E.
    Loureiro, Jose M.
    Ribeiro, Ana M.
    Nogueira, Idelfonso B. R.
    [J]. MATHEMATICS, 2021, 9 (24)
  • [45] Pareto front capture using deterministic optimization methods in multi-criterion aerodynamic design
    College of Aerospace Engineering, NUAA, 29 Yudao Street, Nanjing 210016, China
    [J]. Trans. Nanjing Univ. Aero. Astro, 2006, 2 (81-86):
  • [46] Visualizing Program Quality - A Topological Taxonomy of Features
    Al Omari, Islam
    Al Omoush, Razan
    Innab, Haneen
    Elhassan, A.
    [J]. 2019 2ND INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2019, : 142 - 151
  • [47] Taxonomy for visualizing location-based information
    Suomela R.
    Lehikoinen J.
    [J]. Virtual Reality, 2004, 8 (2) : 71 - 82
  • [48] A new approach to approximate the bounded Pareto front
    Khaledian, Kazhal
    Soleimani-damaneh, Majid
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2015, 82 (02) : 211 - 228
  • [49] Hybrid approach for Pareto front expansion in heuristics
    Yapicioglu, H.
    Liu, H.
    Smith, A. E.
    Dozier, G.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2011, 62 (02) : 348 - 359
  • [50] Accelerating Convergence Towards the Optimal Pareto Front
    Davarynejad, Mohsen
    Rezaei, Jafar
    Vrancken, Jos
    van den Berg, Jan
    Coello Coello, Carlos A.
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2107 - 2114