Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery

被引:99
|
作者
Guo, Miao [1 ]
Yan, Yu [1 ]
Zhang, Hongkai [2 ]
Yan, Husheng [1 ]
Cao, Youjia [2 ]
Liu, Keliang [3 ]
Wan, Shourong [1 ]
Huang, Junsheng [1 ]
Yue, Wei [1 ]
机构
[1] Nankai Univ, Inst Polymer Chem, Minist Educ, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Life Sci, Minist Educ, Key Lab Bioact Mat, Tianjin 300071, Peoples R China
[3] Beijing Inst Pharmacol & Toxicol, Beijing 100850, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/b810061f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A multifunctional nanocarrier with multilayer core-shell architecture was prepared by alkaline coprecipitation of ferric and ferrous ions in the presence of a triblock copolymer, methoxy poly(ethylene glycol)-block-poly(methacrylic acid)-block-poly(glycerol monomethacrylate) (denoted MPEG-b-PMAA-b-PGMA), in aqueous solution. The core of the nanocarrier is a superparamagnetic Fe(3)O(4) nanoparticle, on which the PGMA block of the triblock copolymer is attached. The PMAA block forms the inner shell and the MPEG block forms the outermost shell. The anticancer agent adriamycin (ADR), as a model drug with an amine group and a hydrophobic moiety, was loaded into the nanocarrier at pH 7.4 by combined action of ionic bonding and hydrophobic interaction. The hydrophobic main chain of PMAA and the hydrophobic microenvironment created by MPEG contribute to the hydrophobic interaction. The synergistic effect between the ionic bond and the hydrophobic interaction significantly enhances the loading capacity. At endosomal/lysosomal acidic pH (<5.5), protonation of polycarboxylate anions of PMAA (pK(a) = 5.6) breaks the ionic bond between the carrier and ADR, leading to the release of ADR because the hydrophobic interaction alone is very weak due to the relatively hydrophilic character of the nanocarrier.
引用
收藏
页码:5104 / 5112
页数:9
相关论文
共 50 条
  • [41] pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery
    Soppimath, KS
    Tan, DCW
    Yang, YY
    ADVANCED MATERIALS, 2005, 17 (03) : 318 - +
  • [42] Rhombohedral Hydroxyapatite with Mesoporous Architecture for pH-Responsive Drug Delivery
    Wang, Sha
    Guo, Zhiguang
    CHEMISTRY LETTERS, 2015, 44 (03) : 279 - 281
  • [43] A Magnetic, Core-Shell Structured, pH-Responsive Molecularly Imprinted Polymers for the Selective Detection of Sulfamethoxazole
    Huang, Weihong
    Si, Haojie
    Qing, Yujie
    Zhang, Liming
    Zhang, Wenwen
    Song, Fei
    Ni, Xiaoni
    Yang, Wenming
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2021, 31 (05) : 2054 - 2062
  • [44] Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery
    Chen, Zhaowei
    Li, Zhenhua
    Lin, Youhui
    Yin, Meili
    Ren, Jinsong
    Qu, Xiaogang
    BIOMATERIALS, 2013, 34 (04) : 1364 - 1371
  • [45] Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery
    Wu, Minming
    Cao, Zhaoyu
    Zhao, Yunfei
    Zeng, Rong
    Tu, Mei
    Zhao, Jianhao
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 64 : 346 - 353
  • [46] Effects of three crosslinkers on colored pH-responsive core-shell latexes
    Yuan, Bing
    States, Jeremy
    Sahagun, Chris
    Wicks, Douglas
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 107 (06) : 4093 - 4099
  • [47] Designed Fabrication of Unique Eccentric Mesoporous Silica Nanocluster-Based Core-Shell Nanostructures for pH-Responsive Drug Delivery
    Chen, Lulu
    Li, Lu
    Zhang, Lingyu
    Xing, Shuangxi
    Wang, Tingting
    Wang, Y. Andrew
    Wang, Chungang
    Su, Zhongmin
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) : 7282 - 7290
  • [48] Dual pH-Responsive Shell-Cleavable Polycarbonate Micellar Nanoparticles for in Vivo Anticancer Drug Delivery
    Liu, Shaoqiong
    Ono, Robert J.
    Yang, Chuan
    Gao, Shujun
    Tan, Jordan Yong Ming
    Hedrick, James L.
    Yang, Yi Yan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) : 19355 - 19364
  • [49] Magnetic alginate core-shell nanoparticles based on Schiff-base imine bonding for pH-responsive doxorubicin delivery system
    Mohammadzadeh, Ali
    Javanbakht, Siamak
    Mohammadi, Reza
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 697
  • [50] pH-Responsive Dendritic Core-Multishell Nanocarriers
    Fleige, Emanuel
    Achazi, Katharina
    Schaletzki, Karolina
    Triemer, Therese
    Haag, Rainer
    JOURNAL OF CONTROLLED RELEASE, 2014, 185 : 99 - 108