Smooth Conditional Transition Paths in Dynamical Gaussian Networks

被引:0
|
作者
Matuszak, Micha [1 ]
Miekisz, Jacek [2 ]
Schreiber, Tomasz [1 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Chopina 12-18, PL-87100 Torun, Poland
[2] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
关键词
Formation Redeployment; Animation Blending; Transition Path; Reconfiguration; CUDA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm for determining optimal transition paths between given configurations of systems consisting of many objects. It is based on the Principle of Least Action and variational equations for Freidlin-Wentzell action functionals in Gaussian networks set-up. We use our method to construct a system controlling motion and redeployment between unit's formations. Another application of the algorithm allows a realistic transformation between two sequences of character animations in a virtual environment. The efficiency of the algorithm has been evaluated in a simple sandbox environment implemented with the use of the NVIDIA CUDA technology.
引用
收藏
页码:204 / +
页数:2
相关论文
共 50 条
  • [1] SMOOTH PATHS OF CONDITIONAL EXPECTATIONS
    Andruchow, Esteban
    Larotonda, Gabriel
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (07) : 1031 - 1050
  • [2] Modelling smooth paths using gaussian processes
    Tay, Meng Keat Christopher
    Laugier, Christian
    [J]. FIELD AND SERVICE ROBOTICS: RESULTS OF THE 6TH INTERNATIONAL CONFERENCE, 2008, 42 : 381 - 390
  • [3] GAUSSIAN APPROXIMATIONS FOR TRANSITION PATHS IN BROWNIAN DYNAMICS
    Lu, Yulong
    Stuart, Andrew
    Weber, Hendrik
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 3005 - 3047
  • [4] Smooth transition pollution-income paths
    Aslanidis, N
    Xepapadeas, A
    [J]. ECOLOGICAL ECONOMICS, 2006, 57 (02) : 182 - 189
  • [5] A smooth transition autoregressive conditional duration model
    Chiang, Min-Hsien
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2007, 11 (01):
  • [6] MPE Inference in Conditional Linear Gaussian Networks
    Salmeron, Antonio
    Rumi, Rafael
    Langseth, Helge
    Madsen, Anders L.
    Nielsen, Thomas D.
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2015, 2015, 9161 : 407 - 416
  • [7] Local propagation in conditional Gaussian Bayesian networks
    Cowell, RG
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1517 - 1550
  • [8] Dynamical transition for a particle in a squared Gaussian potential
    Touya, C.
    Dean, D. S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : 919 - 934
  • [9] Dynamical geography and transition paths of Sargassum in the tropical Atlantic
    Beron-Vera, F. J.
    Olascoaga, M. J.
    Putman, N. F.
    Trinanes, J.
    Goni, G. J.
    Lumpkin, R.
    [J]. AIP ADVANCES, 2022, 12 (10)
  • [10] Filtering Nonlinear Turbulent Dynamical Systems through Conditional Gaussian Statistics
    Chen, Nan
    Majda, Andrew J.
    [J]. MONTHLY WEATHER REVIEW, 2016, 144 (12) : 4885 - 4917