Jaya optimization algorithm with GPU acceleration

被引:10
|
作者
Jimeno-Morenilla, A. [1 ]
Sanchez-Romero, J. L. [1 ]
Migallon, H. [2 ]
Mora-Mora, H. [1 ]
机构
[1] Univ Alicante, Dept Comp Technol, Alicante 03071, Spain
[2] Miguel Hernandez Univ, Dept Phys & Comp Architecture, Elche 03202, Spain
来源
JOURNAL OF SUPERCOMPUTING | 2019年 / 75卷 / 03期
关键词
Jaya; Optimization; Parallelism; GPU; CUDA;
D O I
10.1007/s11227-018-2316-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Optimization methods allow looking for an optimal value given a specific function within a constrained or unconstrained domain. These methods are useful for a wide range of scientific and engineering applications. Recently, a new optimization method called Jaya has generated growing interest because of its simplicity and efficiency. In this paper, we present the Jaya GPU-based parallel algorithms we developed and analyze both parallel performance and optimization performance using a well-known benchmark of unconstrained functions. Results indicate that parallel Jaya implementation achieves significant speed-up for all benchmark functions, obtaining speed-ups of up to 190x, without affecting optimization performance.
引用
收藏
页码:1094 / 1106
页数:13
相关论文
共 50 条
  • [31] GPU acceleration of the KAZE image feature extraction algorithm
    Ramkumar, B.
    Laber, Rob
    Bojinov, Hristo
    Hegde, Ravi Sadananda
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (05) : 1169 - 1182
  • [32] An improved Jaya optimization algorithm with Lévy flight
    Iacca, Giovanni
    dos Santos Junior, Vlademir Celso
    Veloso de Melo, Vinícius
    Expert Systems with Applications, 2021, 165
  • [33] GPU Based Acceleration for Fergus' Image Deblurring Algorithm
    Karunaratne, K. G. W.
    Wickramasinghe, P. U.
    Samarawickrama, J. G.
    2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,
  • [34] GPU Acceleration of Head-Gordon-Pople Algorithm
    Suzuki, Kanta
    Ito, Yasuaki
    Fujii, Haruto
    Yokogawa, Nobuya
    Tsuji, Satoki
    Nakano, Koji
    Kasagi, Akihiko
    2024 TWELFTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING, CANDAR 2024, 2024, : 115 - 124
  • [35] Efficient Stochastic FDTD Algorithm with Optimized GPU Acceleration
    Papadimopoulos, Athanasios N.
    Pyrialakos, Georgios G.
    Kantartzis, Nikolaos V.
    Tsiboukis, Theodoros D.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (08): : 877 - 883
  • [36] Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm
    Mei, Gang
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [37] Computing Acceleration of FMM Algorithm on the Basis of FPGA and GPU
    Chai, Yahui
    Shen, Wenfeng
    Xu, Weimin
    Zheng, Yanheng
    MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 3272 - 3277
  • [38] GPU acceleration of the KAZE image feature extraction algorithm
    B. Ramkumar
    Rob Laber
    Hristo Bojinov
    Ravi Sadananda Hegde
    Journal of Real-Time Image Processing, 2020, 17 : 1169 - 1182
  • [39] Efficient Stochastic FDTD Algorithm with Optimized GPU Acceleration
    1600, Applied Computational Electromagnetics Society (ACES) (31):
  • [40] PARALLEL BIOGEOGRAPHY-BASED OPTIMIZATION WITH GPU ACCELERATION FOR NONLINEAR OPTIMIZATION
    Zhu, Weihang
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2010, VOL 1, PTS A AND B, 2010, : 315 - 323