Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory

被引:30
|
作者
Li, Weifeng [1 ]
Wang, Hewu [1 ]
Ouyang, Minggao [1 ]
Xu, Chengshan [1 ]
Lu, Languang [1 ]
Feng, Xuning [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-ion batteries; Intemal combustion engine; Thermal runaway; Combustion; Mode; COMPRESSION IGNITION ENGINE; NOX EMISSIONS; HIGH-POWER; MIXTURE PROPERTIES; EXHAUST EMISSIONS; FUEL ENGINE; PERFORMANCE; EFFICIENCY; STABILITY; BEHAVIOR;
D O I
10.1016/j.enconman.2019.02.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a theoretical and experimental analysis of the thermal runaway process of lithium-ion batteries (LIBs) based on the internal combustion engines (ICEs) combustion theory. The experiments used 3.7 V, 31.6 Ah, lithium nickel cobalt manganese oxide cells and an electronically pilot-ignited natural gas engine. The temperature characteristics between the ICE combustion process and the LIB thermal runaway process were analyzed and compared. The process evolution of the LIB failure process was summaried with the ICE working .process. One key evaluation parameters (T-sa) and its physical meanings of LIB thermal runaway characteristics was proposed. The reaction mode of the LIB thermal runaway process and its process divisions were analyzed based on the ICE combustion theory. In addition, the method of optimizating the LIB thermal runaway process was pointed out from the viewpoint of reaction mode. The results show that there exist high similarities between the temperature characteristics of the ICE combustion process and the LIB thermal runaway process. The temperatures of the above two processes first rise slowly, then rise sharply, and finally fall rapidly. The LIB failure process can be divided into four processes similar to those of the ICE working process: assemble, abuse, thermal runaway, and eruption. T-sa is the key parameter for early warning and evaluation of thermal runaway. The whole process is dominated by reactivity-controlled self-accelerated chemical reaction (RSCR) mode. The LIB RSCR can be characterized in terms of the induction period and duration, similar to the ICE combustion process. The duration is divided into the slow-reaction, fast-reaction and post-reaction periods. The reaction process is always accompanied by derivative processes, such as gassing, erupting and burning. Based on the ICE combustion theory, it can be concluded that the main reason for the un-controlled LIB thermal runaway process is that the internal cell boundaries are not controlled effectively.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 50 条
  • [21] In-situ Analysis of Thermal Runaway Gas in Ternary Lithium-ion Battery
    Zhang Q.
    Qu Y.
    Hao C.
    Liu T.
    Chen D.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (07): : 2817 - 2825
  • [22] Understanding the combustion characteristics and establishing a safety evaluation technique based on the overcharged thermal runaway of lithium-ion batteries
    Bi, Shansong
    Yu, Zhanglong
    Fang, Sheng
    Shen, Xueling
    Cui, Yi
    Yun, Fengling
    Shi, Dong
    Gao, Min
    Zhang, Hang
    Tang, Ling
    Zhang, Xin
    Fang, Yanyan
    Zhang, Xiangjun
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [23] Experimental Study on Thermal Runaway Behavior of Lithium-Ion Battery and Analysis of Combustible Limit of Gas Production
    Yang, Xinwei
    Wang, Hewu
    Li, Minghai
    Li, Yalun
    Li, Cheng
    Zhang, Yajun
    Chen, Siqi
    Shen, Hengjie
    Qian, Feng
    Feng, Xuning
    Ouyang, Minggao
    BATTERIES-BASEL, 2022, 8 (11):
  • [24] Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems
    Zhang, Xiong
    Yao, Jian
    Zhu, Linpei
    Wu, Jun
    Wei, Dan
    Wang, Qingquan
    Chen, Hu
    Li, Kaixiang
    Gao, Zhenyu
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [25] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [26] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [27] Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery
    Zhang, Qingsong
    Liu, Tiantian
    Wang, Qiong
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [28] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81
  • [29] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [30] Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery
    Dong, Yuanjin
    Meng, Jian
    Sun, Xiaomei
    Zhao, Peidong
    Sun, Peng
    Zheng, Bin
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):