Illumination Unification for Person Re-Identification

被引:42
|
作者
Zhang, Guoqing [1 ,2 ]
Luo, Zhiyuan [1 ]
Chen, Yuhao [1 ]
Zheng, Yuhui [1 ]
Lin, Weisi [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Lighting; Training; Image restoration; Testing; Cameras; Task analysis; Image reconstruction; Person re-identification; generative adversarial network; illumination-adaptive; FEATURES; NETWORK;
D O I
10.1109/TCSVT.2022.3169422
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The performance of person re-identification (re-ID) is easily affected by illumination variations caused by different shooting times, places and cameras. Existing illumination-adaptive methods usually require annotating cross-camera pedestrians on each illumination scale, which is unaffordable for a long-term person retrieval system. The cross-illumination person retrieval problem presents a great challenge for accurate person matching. In this paper, we propose a novel method to tackle this task, which only needs to annotate pedestrians on one illumination scale. Specifically, (i) we propose a novel Illumination Estimation and Restoring framework (IER) to estimate the illumination scale of testing images taken at different illumination conditions and restore them to the illumination scale of training images, such that the disparities between training images with uniform illumination and testing images with varying illuminations are reduced. IER achieves promising results on illumination-adaptive dataset and proving itself a proper baseline for cross-illumination person re-ID. (ii) we propose a Mixed Training strategy using both Original and Reconstructed images (MTOR) to further improve model performance. We generate reconstructed images that are consistent with the original training images in content but more similar to the restored images in style. The reconstructed images are combined with the original training images for supervised training to further reduce the domain gap between original training images and restored testing images. To verify the effectiveness of our method, some simulated illumination-adaptive datasets are constructed with various illumination conditions. Extensive experimental results on the simulated datasets validate the effectiveness of the proposed method. The source code is available at https://github.com/FadeOrigin/IUReId.
引用
收藏
页码:6766 / 6777
页数:12
相关论文
共 50 条
  • [21] Weakly Supervised Person Re-Identification
    Meng, Jingke
    Wu, Sheng
    Zheng, Wei-Shi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 760 - 769
  • [22] Review of person re-identification techniques
    Saghafi, Mohammad Ali
    Hussain, Aini
    Zaman, Halimah Badioze
    Saad, Mohamad Hanif Md
    IET COMPUTER VISION, 2014, 8 (06) : 455 - 474
  • [23] Unsupervised Tracklet Person Re-Identification
    Li, Minxian
    Zhu, Xiatian
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1770 - 1782
  • [24] Pose Transferrable Person Re-Identification
    Liu, Jinxian
    Ni, Bingbing
    Yan, Yichao
    Zhou, Peng
    Cheng, Shuo
    Hu, Jianguo
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4099 - 4108
  • [25] Evaluating Features for Person Re-Identification
    Wang, Jiabao
    Li, Hang
    Li, Yang
    Xu, Yulong
    Miao, Zhuang
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 214 - 219
  • [26] Cluster Loss for Person Re-Identification
    Alex, Doney
    Sami, Zishan
    Banerjee, Sumandeep
    Panda, Subrat
    ELEVENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2018), 2018,
  • [27] PERSON RE-IDENTIFICATION BY MANIFOLD RANKING
    Loy, Chen Change
    Liu, Chunxiao
    Gong, Shaogang
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3567 - 3571
  • [28] Gait recognition for person re-identification
    Omar Elharrouss
    Noor Almaadeed
    Somaya Al-Maadeed
    Ahmed Bouridane
    The Journal of Supercomputing, 2021, 77 : 3653 - 3672
  • [29] Cross Dataset Person Re-identification
    Hu, Yang
    Yi, Dong
    Liao, Shengcai
    Lei, Zhen
    Li, Stan Z.
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT III, 2015, 9010 : 650 - 664
  • [30] Exploiting prunability for person re-identification
    Hugo Masson
    Amran Bhuiyan
    Le Thanh Nguyen-Meidine
    Mehrsan Javan
    Parthipan Siva
    Ismail Ben Ayed
    Eric Granger
    EURASIP Journal on Image and Video Processing, 2021