Synchronization of Chaos in Fully Developed Turbulence

被引:40
|
作者
Lalescu, Cristian C. [1 ]
Meneveau, Charles [2 ]
Eyink, Gregory L. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
APPROXIMATE INERTIAL MANIFOLDS; SPATIOTEMPORAL CHAOS;
D O I
10.1103/PhysRevLett.110.084102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate chaos synchronization of small-scale motions in the three-dimensional turbulent energy cascade, via pseudospectral simulations of the incompressible Navier-Stokes equations. The modes of the turbulent velocity field below about 20 Kolmogorov dissipation lengths are found to be slaved to the chaotic dynamics of larger-scale modes. The dynamics of all dissipation-range modes can be recovered to full numerical precision by solving small-scale dynamical equations with the given large-scale solution as an input, regardless of initial condition. The synchronization rate exponent scales with the Kolmogorov dissipation time scale, with possible weak corrections due to intermittency. Our results suggest that all sub-Kolmogorov length modes should be fully recoverable from numerical simulations with standard, Kolmogorov-length grid resolutions. DOI: 10.1103/PhysRevLett.110.084102
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Multifractal approach to fully developed turbulence
    Benzi, Roberto
    Vulpiani, Angelo
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2022, 33 (03) : 471 - 477
  • [12] INTERMITTENCY OF FULLY-DEVELOPED TURBULENCE
    FUJISAKA, H
    MORI, H
    PHYSICS LETTERS A, 1979, 72 (06) : 444 - 445
  • [14] CROSSOVER DIMENSIONS FOR FULLY DEVELOPED TURBULENCE
    FRISCH, U
    LESIEUR, M
    SULEM, PL
    PHYSICAL REVIEW LETTERS, 1976, 37 (14) : 895 - 897
  • [15] Geometry of intermittency in fully developed turbulence
    Queiros-Condé, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (14): : 1385 - 1390
  • [16] Fully Developed Turbulence and the Multifractal Conjecture
    Roberto Benzi
    Luca Biferale
    Journal of Statistical Physics, 2009, 135 : 977 - 990
  • [17] UNIVERSALITY IN FULLY-DEVELOPED TURBULENCE
    GROSSMANN, S
    LOHSE, D
    PHYSICAL REVIEW E, 1994, 50 (04): : 2784 - 2789
  • [18] Multifractal structure of fully developed turbulence
    Zybin, K. P.
    Sirota, A.
    PHYSICAL REVIEW E, 2013, 88 (04)
  • [19] Vorticity Statistics in Fully Developed Turbulence
    Wilczek, Michael
    Daitche, Anton
    Friedrich, Rudolf
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCHING/MUNICH 2009: TRANSACTIONS OF THE FOURTH JOINT HLRB AND KONWIHR REVIEW AND RESULTS WORKSHOP, 2010, : 109 - 120
  • [20] Fully Developed Turbulence and the Multifractal Conjecture
    Benzi, Roberto
    Biferale, Luca
    JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (5-6) : 977 - 990