Fast parametric time warping of peak lists

被引:31
|
作者
Wehrens, Ron [1 ]
Bloemberg, Tom G. [2 ,3 ]
Eilers, Paul H. C. [1 ]
机构
[1] Wageningen UR, Biometris, Wageningen, Netherlands
[2] Radboud Univ Nijmegen, Educ Inst Mol Sci, NL-6525 ED Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
关键词
MULTIVARIATE CURVE RESOLUTION; ALIGNMENT;
D O I
10.1093/bioinformatics/btv299
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Alignment of peaks across samples is a difficult but unavoidable step in the data analysis for all analytical techniques containing a separation step like chromatography. Important application examples are the fields of metabolomics and proteomics. Parametric time warping (PTW) has already shown to be very useful in these fields because of the highly restricted form of the warping functions, avoiding overfitting. Here, we describe a new formulation of PTW, working on peak-picked features rather than on complete profiles. Not only does this allow for a much more smooth integration in existing pipelines, it also speeds up the (already among the fastest) algorithm by orders of magnitude. Using two publicly available datasets we show the potential of the new approach. The first set is a LC-DAD dataset of grape samples, and the second an LC-MS dataset of apple extracts.
引用
收藏
页码:3063 / 3065
页数:3
相关论文
共 50 条
  • [41] A Time-Warping Pitch Tracking Algorithm considering fast f0 changes
    Stone, Simon
    Steiner, Peter
    Birkholz, Peter
    [J]. 18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 419 - 423
  • [42] Discrete wavelet assisted correlation optimised warping of chromatograms: optimizing the computational time for correcting the drifts in peak positions
    Kumar, Keshav
    [J]. ANALYTICAL METHODS, 2017, 9 (13) : 2049 - 2058
  • [43] Ultra-fast global homology detection with Discrete Cosine Transform and Dynamic Time Warping
    Raimondi, Daniele
    Orlando, Gabriele
    Moreau, Yves
    Vranken, Wim F.
    [J]. BIOINFORMATICS, 2018, 34 (18) : 3118 - 3125
  • [44] Dynamic Time Warping under limited warping path length
    Zhang, Zheng
    Tavenard, Romain
    Bailly, Adeline
    Tang, Xiaotong
    Tang, Ping
    Corpetti, Thomas
    [J]. INFORMATION SCIENCES, 2017, 393 : 91 - 107
  • [45] Principal Curve Time Warping
    Ozertem, Umut
    Erdogmus, Deniz
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (06) : 2041 - 2049
  • [46] Dynamic Dynamic Time Warping
    Bringmann, Karl
    Fischer, Nick
    van der Hoog, Ivor
    Kipouridis, Evangelos
    Kociumaka, Tomasz
    Rotenberg, Eva
    [J]. PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 208 - 242
  • [47] Deep attentive time warping
    Matsuo, Shinnosuke
    Wu, Xiaomeng
    Atarsaikhan, Gantugs
    Kimura, Akisato
    Kashino, Kunio
    Iwana, Brian Kenji
    Uchida, Seiichi
    [J]. PATTERN RECOGNITION, 2023, 136
  • [48] Quaternion Dynamic Time Warping
    Jablonski, Bartosz
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1174 - 1183
  • [49] Peak alignment of urine NMR spectra using fuzzy warping
    Wu, W
    Daszykowski, M
    Walczak, B
    Sweatman, BC
    Connor, SC
    Haseldeo, JN
    Crowther, DJ
    Gill, RW
    Lutz, MW
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (02) : 863 - 875
  • [50] Generalized Canonical Time Warping
    Zhou, Feng
    De la Torre, Fernando
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 279 - 294