Fast parametric time warping of peak lists

被引:31
|
作者
Wehrens, Ron [1 ]
Bloemberg, Tom G. [2 ,3 ]
Eilers, Paul H. C. [1 ]
机构
[1] Wageningen UR, Biometris, Wageningen, Netherlands
[2] Radboud Univ Nijmegen, Educ Inst Mol Sci, NL-6525 ED Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
关键词
MULTIVARIATE CURVE RESOLUTION; ALIGNMENT;
D O I
10.1093/bioinformatics/btv299
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Alignment of peaks across samples is a difficult but unavoidable step in the data analysis for all analytical techniques containing a separation step like chromatography. Important application examples are the fields of metabolomics and proteomics. Parametric time warping (PTW) has already shown to be very useful in these fields because of the highly restricted form of the warping functions, avoiding overfitting. Here, we describe a new formulation of PTW, working on peak-picked features rather than on complete profiles. Not only does this allow for a much more smooth integration in existing pipelines, it also speeds up the (already among the fastest) algorithm by orders of magnitude. Using two publicly available datasets we show the potential of the new approach. The first set is a LC-DAD dataset of grape samples, and the second an LC-MS dataset of apple extracts.
引用
收藏
页码:3063 / 3065
页数:3
相关论文
共 50 条
  • [1] Parametric time warping
    Eilers, PHC
    [J]. ANALYTICAL CHEMISTRY, 2004, 76 (02) : 404 - 411
  • [2] Improved parametric time warping for proteomics
    Bloemberg, Tom G.
    Gerretzen, Jan
    Wouters, Hans J. P.
    Gloerich, Jolein
    van Dael, Maurice
    Wessels, Hans J. C. T.
    van den Heuvel, Lambert P.
    Eilers, Paul H. C.
    Buydens, Lutgarde M. C.
    Wehrens, Ron
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 104 (01) : 65 - 74
  • [3] Ultra fast warping window optimization for Dynamic Time Warping
    Tan, Chang Wei
    Herrmann, Matthieu
    Webb, Geoffrey, I
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 589 - 598
  • [4] Fast Sparse Dynamic Time Warping
    Hwang, Youngha
    Gelfand, Saul B.
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3872 - 3877
  • [5] Multivariate time series classification with parametric derivative dynamic time warping
    Gorecki, Tomasz
    Luczak, Maciej
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2305 - 2312
  • [6] Chromatographic Peak Alignment Using Derivative Dynamic Time Warping
    Bork, Christopher
    Ng, Kenneth
    Liu, Yinhan
    Yee, Alex
    Pohlscheidt, Michael
    [J]. BIOTECHNOLOGY PROGRESS, 2013, 29 (02) : 394 - 402
  • [7] Univariate and multivariate time series classification with parametric integral dynamic time warping
    Luczak, Maciej
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (04) : 2403 - 2413
  • [8] AWarp: Fast Warping Distance for Sparse Time Series
    Mueen, Abdullah
    Chavoshi, Nikan
    Abu-El-Rub, Noor
    Hamooni, Hossein
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 350 - 359
  • [9] Hierarchical clustering of time series data with parametric derivative dynamic time warping
    Luczak, Maciej
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 62 : 116 - 130
  • [10] Fast Dynamic Time Warping for Temperature Compensation in Guided Waves
    Kumar, Narendra
    Gupta, Payal
    Carlson, Johan E.
    [J]. e-Journal of Nondestructive Testing, 2024, 29 (06):