Robust combinatorial optimization with knapsack uncertainty

被引:21
|
作者
Poss, Michael [1 ]
机构
[1] Univ Montpellier, CNRS, LIRMM, UMR 5506, 161 Rue Ada, F-34392 Montpellier 5, France
关键词
Robust optimization; Combinatorial optimization; Approximation algorithms; Ellipsoidal uncertainty; DISCRETE OPTIMIZATION; COST; NETWORKS;
D O I
10.1016/j.disopt.2017.09.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertsimas and Sim (2003). We also study the limitation of the approach and point out NP-hard situations. Then, we approximate axis-parallel ellipsoids with knapsack constraints and provide an approximation scheme for the corresponding robust problem. The approximation scheme is also adapted to handle the intersection of an axis-parallel ellipsoid and a box. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [41] Adjustable Robust Optimization with Discrete Uncertainty
    Lefebvre, Henri
    Malaguti, Enrico
    Monaci, Michele
    [J]. INFORMS JOURNAL ON COMPUTING, 2024, 36 (01) : 78 - 96
  • [42] UNCERTAINTY BASED ROBUST OPTIMIZATION IN AERODYNAMICS
    Tang, Zhili
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (03): : 477 - 480
  • [43] Adjustable robust optimization with objective uncertainty
    Detienne, Boris
    Lefebvre, Henri
    Malaguti, Enrico
    Monaci, Michele
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 312 (01) : 373 - 384
  • [44] Randomized Minmax Regret for Combinatorial Optimization Under Uncertainty
    Mastin, Andrew
    Jaillet, Patrick
    Chin, Sang
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 491 - 501
  • [45] A Novel Sampling Approach to Combinatorial Optimization Under Uncertainty
    Urmila M. Diwekar
    [J]. Computational Optimization and Applications, 2003, 24 : 335 - 371
  • [46] Uncertainty Quantification and Robust Optimization in Engineering
    Kumar, D.
    Alam, S. B.
    Vucinic, Dean
    Lacor, C.
    [J]. ADVANCES IN VISUALIZATION AND OPTIMIZATION TECHNIQUES FOR MULTIDISCIPLINARY RESEARCH: TRENDS IN MODELLING AND SIMULATIONS FOR ENGINEERING APPLICATIONS, 2020, : 63 - 93
  • [47] Conformal Uncertainty Sets for Robust Optimization
    Johnstone, Chancellor
    Cox, Bruce
    [J]. CONFORMAL AND PROBABILISTIC PREDICTION AND APPLICATIONS, VOL 152, 2021, 152 : 72 - 90
  • [48] Adaptive Uncertainty Resolution in Bayesian Combinatorial Optimization Problems
    Guha, Sudipto
    Munagala, Kamesh
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (01)
  • [49] A novel sampling approach to combinatorial optimization under uncertainty
    Diwekar, UM
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 24 (2-3) : 335 - 371
  • [50] Robust optimization approach for a chance-constrained binary knapsack problem
    Han, Jinil
    Lee, Kyungsik
    Lee, Chungmok
    Choi, Ki-Seok
    Park, Sungsoo
    [J]. MATHEMATICAL PROGRAMMING, 2016, 157 (01) : 277 - 296