Robust combinatorial optimization with knapsack uncertainty

被引:21
|
作者
Poss, Michael [1 ]
机构
[1] Univ Montpellier, CNRS, LIRMM, UMR 5506, 161 Rue Ada, F-34392 Montpellier 5, France
关键词
Robust optimization; Combinatorial optimization; Approximation algorithms; Ellipsoidal uncertainty; DISCRETE OPTIMIZATION; COST; NETWORKS;
D O I
10.1016/j.disopt.2017.09.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertsimas and Sim (2003). We also study the limitation of the approach and point out NP-hard situations. Then, we approximate axis-parallel ellipsoids with knapsack constraints and provide an approximation scheme for the corresponding robust problem. The approximation scheme is also adapted to handle the intersection of an axis-parallel ellipsoid and a box. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [1] Robust combinatorial optimization with variable cost uncertainty
    Poss, Michael
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 237 (03) : 836 - 845
  • [2] Robust combinatorial optimization with variable budgeted uncertainty
    Poss, Michael
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2013, 11 (01): : 75 - 92
  • [3] Mixed uncertainty sets for robust combinatorial optimization
    Dokka, Trivikram
    Goerigk, Marc
    Roy, Rahul
    [J]. OPTIMIZATION LETTERS, 2020, 14 (06) : 1323 - 1337
  • [4] Robust combinatorial optimization with variable budgeted uncertainty
    Michael Poss
    [J]. 4OR, 2013, 11 : 75 - 92
  • [5] Mixed uncertainty sets for robust combinatorial optimization
    Trivikram Dokka
    Marc Goerigk
    Rahul Roy
    [J]. Optimization Letters, 2020, 14 : 1323 - 1337
  • [6] Robust and MaxMin Optimization under Matroid and Knapsack Uncertainty Sets
    Gupta, Anupam
    Nagarajan, Viswanath
    Ravi, R.
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (01)
  • [7] Recycling Inequalities for Robust Combinatorial Optimization with Budget Uncertainty
    Buesing, Christina
    Gersing, Timo
    Koster, Arie M. C. A.
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2023, 2023, 13904 : 58 - 71
  • [8] Recycling valid inequalities for robust combinatorial optimization with budgeted uncertainty
    Buesing, Christina
    Gersing, Timo
    Koster, Arie M. C. A.
    [J]. MATHEMATICAL PROGRAMMING, 2024,
  • [9] Approximate Kernel Learning Uncertainty Set for Robust Combinatorial Optimization
    Loger, Benoit
    Dolgui, Alexandre
    Lehuede, Fabien
    Massonnet, Guillaume
    [J]. INFORMS JOURNAL ON COMPUTING, 2024, 36 (03)
  • [10] Robust combinatorial optimization under convex and discrete cost uncertainty
    Buchheim, Christoph
    Kurtz, Jannis
    [J]. EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2018, 6 (03) : 211 - 238