The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission

被引:26
|
作者
Klipstein, William M. [1 ]
Arnold, Bradford W. [1 ]
Enzer, Daphna G. [1 ]
Ruiz, Alberto A. [1 ]
Tien, Jeffrey Y. [1 ]
Wang, Rabi T. [1 ]
Dunn, Charles E. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
GRAIL; Gravity; Moon; GRACE; Ranging;
D O I
10.1007/s11214-013-9973-x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Lunar Gravity Ranging System (LGRS) flying on NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz(1/2). GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth's Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters.
引用
下载
收藏
页码:57 / 76
页数:20
相关论文
共 50 条
  • [41] GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data
    Lemoine, Frank G.
    Goossens, Sander
    Sabaka, Terence J.
    Nicholas, Joseph B.
    Mazarico, Erwan
    Rowlands, David D.
    Loomis, Bryant D.
    Chinn, Douglas S.
    Neumann, Gregory A.
    Smith, David E.
    Zuber, Maria T.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (10) : 3382 - 3389
  • [42] Searching for scalar-tensor gravity with lunar laser ranging
    Nordtvedt, K
    GRAVITATIONAL CONSTANT: GENERALIZED GRAVITATIONAL THEORIES AND EXPERIMENTS, 2004, 141 : 289 - 311
  • [43] Comment on "progress in lunar laser ranging tests of relativistic gravity"
    Dumin, Yurii V.
    PHYSICAL REVIEW LETTERS, 2007, 98 (05)
  • [44] Assessing Reduced-Dynamic Parametrizations for GRAIL Orbit Determination and the Recovery of Independent Lunar Gravity Field Solutions
    Bertone, S.
    Arnold, D.
    Girardin, V
    Lasser, M.
    Meyer, U.
    Jaggi, A.
    EARTH AND SPACE SCIENCE, 2021, 8 (06)
  • [45] THE LUNAR ENVIRONMENT AS A FRACTIONAL-GRAVITY BIOLOGICAL LABORATORY
    GARSHNEK, V
    ACTA ASTRONAUTICA, 1994, 33 : 211 - 215
  • [46] IMPROVED PRECISION ORBIT DETERMINATION OF LUNAR ORBITERS FROM THE GRAIL-DERIVED LUNAR GRAVITY MODELS
    Mazarico, Erwan
    Lemoine, Frank G.
    Goossens, Sander J.
    Sabaka, Terence J.
    Nicholas, Joseph B.
    Rowlands, David D.
    Neumann, Gregory A.
    Torrence, Mark H.
    Smith, David E.
    Zuber, Maria T.
    SPACEFLIGHT MECHANICS 2013, PTS I-IV, 2013, 148 : 1125 - 1141
  • [47] A PRELIMINARY ERROR ANALYSIS OF THE GRAVITY-FIELD RECOVERY FROM A LUNAR SATELLITE-TO-SATELLITE MISSION
    IZ, HB
    BULLETIN GEODESIQUE, 1993, 67 (03): : 173 - 177
  • [48] TESTING EINSTEIN THEORY OF GRAVITY BY ANALYZING LUNAR LASER RANGING DATA
    MULLER, J
    SCHNEIDER, M
    SOFFEL, M
    RUDER, H
    ASTROPHYSICAL JOURNAL, 1991, 382 (02): : L101 - L103
  • [49] NON-RIEMANNIAN THEORIES OF GRAVITY AND LUNAR AND SATELLITE LASER RANGING
    CIUFOLINI, I
    MATZNER, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (04): : 843 - 852
  • [50] Lunar laser ranging: A comprehensive probe of post-Newtonian gravity
    Nordtvedt, K
    GRAVITATION: FROM THE HUBBLE LENGTH TO THE PLANCK LENGTH, 2005, : 97 - 113