Activated Cdc42-Bound IQGAP1 Determines the Cellular Endocytic Site

被引:24
|
作者
Kimura, Toshihide [1 ]
Yamaoka, Mami [1 ]
Taniguchi, Shigeki [1 ]
Okamoto, Mitsuhiro [1 ]
Takei, Masahiro [1 ]
Ando, Tomomi [1 ]
Iwamatsu, Akihiro [2 ]
Watanabe, Takashi [3 ]
Kaibuchi, Kozo [3 ,4 ]
Ishizaki, Toshimasa [1 ]
Niki, Ichiro [1 ]
机构
[1] Oita Univ, Fac Med, Dept Pharmacol, Oita 87011, Japan
[2] Prot Res Network Inc, Midori Ku, Yokohama, Kanagawa, Japan
[3] Nagoya Univ, Grad Sch Med, Dept Cell Pharmacol, Showa Ku, Nagoya, Aichi 4648601, Japan
[4] JST, CREST, Kawaguchi, Saitama, Japan
关键词
GDP-DISSOCIATION INHIBITOR; INSULIN GRANULES; BINDING-PROTEIN; RAB PROTEINS; BETA-CELLS; MEMBRANE; CDC42; EFFECTOR; RAC1; EXOCYTOSIS;
D O I
10.1128/MCB.00895-13
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane
引用
收藏
页码:4834 / 4843
页数:10
相关论文
共 50 条
  • [21] Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170
    Fukata, M
    Watanabe, T
    Noritake, J
    Nakagawa, M
    Yamaga, M
    Kuroda, S
    Matsuura, Y
    Iwamatsu, A
    Perez, F
    Kaibuchi, K
    CELL, 2002, 109 (07) : 873 - 885
  • [22] Identification and characterization of the dimerization site of IQGAP1
    Ren, JG
    Li, ZG
    Sacks, DB
    FASEB JOURNAL, 2005, 19 (04): : A255 - A256
  • [23] IQGAP1 regulates Salmonella invasion through interactions with actin, Rac1, and Cdc42
    Brown, Matthew D.
    Bry, Lynn
    Li, Zhigang
    Sacks, David B.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (41) : 30265 - 30272
  • [24] Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos
    Bielak-Zmijewska, Anna
    Kolano, Agnieszka
    Szczepanska, Katarzyna
    Maleszewski, Marek
    Borsuk, Ewa
    DEVELOPMENTAL BIOLOGY, 2008, 322 (01) : 21 - 32
  • [25] Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility
    Kholmanskikh, SS
    Koeller, HB
    Wynshaw-Boris, A
    Gomez, T
    Letourneau, PC
    Ross, ME
    NATURE NEUROSCIENCE, 2006, 9 (01) : 50 - 57
  • [26] Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility
    Stanislav S Kholmanskikh
    Hajira B Koeller
    Anthony Wynshaw-Boris
    Timothy Gomez
    Paul C Letourneau
    M Elizabeth Ross
    Nature Neuroscience, 2006, 9 : 50 - 57
  • [27] MISP regulates the IQGAP1/Cdc42 complex to collectively orchestrate spindle orientation and mitotic progression
    Vodicska, Barbara
    Cerikan, Berati
    Schiebel, Elmar
    Hoffmann, Ingrid
    SCIENTIFIC REPORTS, 2018, 8
  • [28] MISP regulates the IQGAP1/Cdc42 complex to collectively orchestrate spindle orientation and mitotic progression
    Barbara Vodicska
    Berati Cerikan
    Elmar Schiebel
    Ingrid Hoffmann
    Scientific Reports, 8
  • [29] The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA
    Sakurai-Yageta, Mika
    Recchi, Chiara
    Le Dez, Gaelle
    Sibarita, Jean-Baptiste
    Daviet, Laurent
    Camonis, Jacques
    D'Souza-Schorey, Crislyn
    Chavrier, Philippe
    JOURNAL OF CELL BIOLOGY, 2008, 181 (06): : 985 - 998
  • [30] Mechanism of the transition from a Par-3-to Cdc42-bound Par complex
    Vargas, E.
    Prehoda, K.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 1076 - 1077