Comparative performance analysis of machine learning classifiers in detection of childhood pneumonia using chest radiographs

被引:30
|
作者
Sousa, Rafael T. [1 ]
Marques, Oge [2 ]
Soares, Fabrizzio Alphonsus A. M. N. [1 ]
Sene, Iwens I. G., Jr. [1 ]
de Oliveira, Leandro L. G. [1 ]
Spoto, Edmundo S. [1 ]
机构
[1] Univ Fed Goias, Inst Informat, Caixa Postal 131, BR-74001970 Goiania, Go, Brazil
[2] Florida Atlantic Univ, Dept Comp & Elect Engn,Comp Sci, Boca Raton, FL 33431 USA
关键词
Machine Learning; Computer-Aided Diagnosis (CAD); Childhood pneumonia; COMPUTER-AIDED DIAGNOSIS;
D O I
10.1016/j.procs.2013.05.444
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work extends PneumoCAD, a Computer-Aided Diagnosis system for detecting pneumonia in infants using radiographic images [1], with the aim of improving the system's accuracy and robustness. We implement and compare three contemporary machine learning classifiers, namely: Naive Bayes, K-Nearest Neighbor (KNN), and Support Vector Machines (SVM). Results of our experiments demonstrate that the SVM classifier produces the best overall results.
引用
收藏
页码:2579 / 2582
页数:4
相关论文
共 50 条
  • [1] Investigation of the performance of Machine Learning Classifiers for Pneumonia Detection in Chest X-ray Images
    Al Mamlook, Rabia Emhamed
    Chen, Shengfeng
    Bzizi, Hanin Fawzi
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2020, : 98 - 104
  • [2] Analysis of Android Malware Detection Performance using Machine Learning Classifiers
    Ham, Hyo-Sik
    Choi, Mi-Jung
    [J]. 2013 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2013): FUTURE CREATIVE CONVERGENCE TECHNOLOGIES FOR NEW ICT ECOSYSTEMS, 2013, : 492 - 497
  • [3] Performance Analysis of Machine Learning Classifiers for Intrusion Detection
    Zwane, Skhumbuzo
    Tarwireyi, Paul
    Adigun, Matthew
    [J]. 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND INNOVATIVE COMPUTING APPLICATIONS (ICONIC), 2018, : 538 - 542
  • [4] Machine Learning Model for Chest Radiographs: Using Local Data to Enhance Performance
    Mohn, Sarah F.
    Law, Marco
    Koleva, Maria
    Lee, Brian
    Berg, Adam
    Murray, Nicolas
    Nicolaou, Savvas
    Parker, William A.
    [J]. CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2023, 74 (03): : 548 - 556
  • [5] A Comparative Study of Spam SMS Detection using Machine Learning Classifiers
    Gupta, Mehul
    Bakliwal, Aditya
    Agarwal, Shubhangi
    Mehndiratta, Pulkit
    [J]. 2018 ELEVENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2018, : 287 - 293
  • [6] Comparative Performance Analysis of Machine Learning Classifiers on Ovarian Cancer Dataset
    Bhattacharjee, Sharmistha
    Singh, Yumnam Jayanta
    Ray, Dipankar
    [J]. 2017 THIRD IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2017, : 213 - 218
  • [7] Sentiment Analysis Using Machine Learning Classifiers: Evaluation of Performance
    Rai, Shamantha B.
    Shetty, Sweekriti M.
    Rai, Prakhyath
    [J]. 2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), 2019, : 21 - 25
  • [8] Pneumonia Detection on Chest X-Ray Using Machine Learning Paradigm
    Chandra, Tej Bahadur
    Verma, Kesari
    [J]. PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 21 - 33
  • [9] A Comparative Study on Detection of Malware and Benign on the Internet Using Machine Learning Classifiers
    Pavithra, J.
    Selvakumara Samy, S.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] Comparative Analysis of Machine Learning Algorithms along with Classifiers for Network Intrusion Detection
    Choudhury, Sumouli
    Bhowal, Anirban
    [J]. 2015 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES AND MANAGEMENT FOR COMPUTING, COMMUNICATION, CONTROLS, ENERGY AND MATERIALS (ICSTM), 2015, : 89 - 95