Linearly repetitive Delone sets are rectifiable

被引:19
|
作者
Aliste-Prieto, Jose [1 ]
Coronel, Daniel [2 ]
Gambaudo, Jean-Marc [3 ]
机构
[1] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[3] Univ Nice Sophia Antipolis, UMR CNRS 7335, Inst Non Lineaire Nice Sophia Antipolis, F-06560 Valbonne, France
关键词
SEPARATED NETS;
D O I
10.1016/j.anihpc.2012.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every linearly repetitive Delone set in the Euclidean d-space R-d, with d >= 2, is equivalent, up to a bi-Lipschitz homeomorphism, to the integer lattice Z(d). In the particular case when the Delone set X in R-d comes from a primitive substitution tiling of R-d, we give a condition on the eigenvalues of the substitution matrix which ensures the existence of a homeomorphism with bounded displacement from X to the lattice beta Z(d) for some positive beta. This condition includes primitive Pisot substitution tilings but also concerns a much broader set of substitution tilings. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:275 / 290
页数:16
相关论文
共 50 条
  • [21] Delone sets and Riesz basis
    Suzuki, H
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1998, 74 (01) : 1 - 3
  • [22] Delone sets with congruent clusters
    Nikolay Dolbilin
    [J]. Structural Chemistry, 2016, 27 : 1725 - 1732
  • [23] RADIAL PROJECTIONS OF RECTIFIABLE SETS
    Orponen, Thomas
    Sahlsten, Thomas
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 677 - 681
  • [24] Delone sets with congruent clusters
    Dolbilin, Nikolay
    [J]. STRUCTURAL CHEMISTRY, 2016, 27 (06) : 1725 - 1732
  • [25] Delone Sets Generated by Square Roots
    Marklof, Jens
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (09): : 836 - 840
  • [26] HIGHER DIMENSIONAL SPIRAL DELONE SETS
    Adiceam, Faustin
    Tsokanos, Ioannis
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 67 (01) : 21 - 46
  • [27] Delone sets in ℝ3: Regularity Conditions
    Dolbilin N.P.
    [J]. Journal of Mathematical Sciences, 2020, 248 (6) : 743 - 761
  • [28] Delone Sets and Tilings: Local Approach
    N. P. Dolbilin
    M. I. Shtogrin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2022, 318 : 65 - 89
  • [29] On the Notions of Symmetry and Aperiodicity for Delone Sets
    Baake, Michael
    Grimm, Uwe
    [J]. SYMMETRY-BASEL, 2012, 4 (04): : 566 - 580
  • [30] Delone Sets and Tilings: Local Approach
    Dolbilin, N. P.
    Shtogrin, M., I
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 318 (01) : 65 - 89